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Abstract – Cellular biology abound with filaments interacting through fluids, from intracellular
microtubules, to rotating flagella and beating cilia. While previous work has demonstrated the
complexity of capturing nonlocal hydrodynamic interactions between moving filaments, the prob-
lem remains difficult theoretically. We show here that when filaments are closer to each other
than their relevant length scale, the integration of hydrodynamic interactions can be approxi-
mately carried out analytically. This leads to a set of simplified local equations, illustrated on a
simple model of two interacting filaments, which can be used to tackle theoretically a range of
problems in biology and physics.

Copyright c⃝ EPLA, 2016

While one tends to think of biological cells as stubby,
their environment is in fact rich with filamentous struc-
tures. Inside cells, polymeric filaments of microtubules,
actin, and intermediate filaments fill the eukaryotic cyto-
plasm [1] and provide it with its mechanical structure [2].
Outside cells, the motion of flagella and cilia allows cells to
generate propulsive forces [3–5] and induces flows critical
to human health [6,7].

In all cases, these biological filaments are immersed in
a viscous fluid in which they move at low Reynolds num-
ber, be it due to their polymerisation, to fluctuations and
thermal forces, or to the action of molecular motors [8].
At low Reynolds number, the flows induced locally by the
motion of filaments relative to a background fluid have a
slow spatial decay as ∼ 1/r [9,10]. In situations where
filaments are close to each other, we thus expect nonlocal
hydrodynamic interactions to be important [11].

Integrating long-ranged hydrodynamic interactions be-
tween filaments has long been recognised as a challeng-
ing problem, and one where the theoretical approach
has consisted of either full numerical simulations or very
simplified analysis. A variety of computational meth-
ods have been developed to tackle it including slender-
body theory [12–14], boundary elements to implement
boundary integral formulations [15], the immersed bound-
ary method [16,17], regularized flow singularities [18] and
particle-based methods [19,20].

While these computational approaches allow to ad-
dress complex geometries and dynamics, the difficulty
of integrating long-range hydrodynamic interactions has

prevented analytical approaches from providing insight be-
yond simplified setups. The two most common approaches
in biophysics consist in replacing the dynamics in three
dimensions by a two-dimensional problem for which the
analysis may be easier to carry out [21,22], or by focusing
on far-field hydrodynamic interactions and ignoring the
geometrical details of near-field hydrodynamics, a pop-
ular approach to study synchronisation of flagella and
cilia [23–29].

In realistic biological situations, three-dimensional fila-
ments are not far from each other, but in fact are often
found in the opposite, near-field, limit where their sepa-
ration distance is much smaller than their length. This is
illustrated in fig. 1(a) with three examples relevant to cell
motility: synchronising flagella of spermatozoa; bundle of
bacterial flagellar filaments; epithelium cilia. In order to
capture the dynamics of these interacting filaments, new
analytical tools are thus required.

In this paper, we show that analytical progress can be
achieved by taking advantage of a separation of length
scales. A generic two-filament setup (as in fig. 1(b)) is
characterized by three length scales: the filament radius,
a; the separation distance between the filaments, h; and
the filament length, L. While far-field studies focus on
the limit h ≫ {L, a}, many biological situations are in the
opposite near-field limit, for example in the case of waving
cilia arrays [30], for which {a, h} ≪ L, i.e., slender fila-
ments close to each other compared to their typical size.
We show here that in the special case where a ≪ h, i.e.,
for filaments thinner than any another other length scale
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Fig. 1: (Colour online) (a) Examples where nearby filaments
interact through a viscous fluid (clockwise from top left):
two spermatozoa synchronising their flagella (reprinted with
permission from Yang, Elgeti and Gompper [31]; c⃝ 2008,
American Physical Society); flagellar filaments of peritric-
hous bacteria during swarming (reprinted with permission from
Turner, Zhang, Darnton and Berg [32]; c⃝ 2010, American Soci-
ety for Microbiology); epithelium cilia (courtesy of C. Daghlian,
Wikimedia Commons). (b) Prototypical setup: two slender fil-
aments of length L and radius a at a typical distance h from
each other.

in the problem, the hydrodynamic interactions between
the filaments can be analytically integrated out, leading
to a set of simplified local equations valid in the limit
a ≪ h ≪ L. Our results, illustrated on a simple model of
two interacting rigid filaments, will allow to tackle theo-
retically a range of problems in biology and physics.

Consider the two filaments in fig. 1(b), numbered #1
and #2. Denote the location of the centerline to filament
i as r(i)(s, t) where s is the arclength, and let t(i)(s) =
∂r(i)/∂s be its unit tangent.

In order to compute the hydrodynamic forces on the fil-
aments, we exploit the two assumed separations of scales,
a ≪ h ≪ L. We first note that the limit a ≪ L implies
that the filaments are slender. Furthermore, since the dis-
placements of the filaments are at most on the order of
their separation distance, h, their typical curvature, de-
noted κ, is at most of order κ ∼ h/L2. Since we assume the
limit h ≪ L, this means that we have always κh ≪ 1 and
κL ≪ 1, and the filaments undergo long-wavelength defor-
mation. In that case, resistive-force theory may be used
to calculate the hydrodynamic force densities on each fila-
ment [9,33,34]. Denoting the force densities f (1) and f (2),
resistive-force theory states that they are proportional to
the local velocity of the filament relative the background
fluid, i.e.,

f
(1) = −

(

ξ⊥I + (ξ∥ − ξ⊥)t(1)
t
(1)

)

·
(

∂r(1)

∂t
− v

(2)→(1)

)

,

(1a)

f
(2) = −

(

ξ⊥I + (ξ∥ − ξ⊥)t(2)
t
(2)

)

·
(

∂r(2)

∂t
− v

(1)→(2)

)

,

(1b)

where all fields are implicitly functions of s and t and
where ξ⊥ and ξ∥ are the drag coefficients for motion in

the direction perpendicular and parallel to its local tan-
gent [9,33,34]. We compute below the hydrodynamic force
density acting on filament #1, the other one being de-
duced by symmetry. In eq. (1a), the term v(2)→(1) denotes
the flow induced by the motion of filament #2 near fila-
ment #1: it represents the effect of hydrodynamic interac-
tions and the goal of this paper is to show how to calculate
its value. As filament #2 undergoes in general both rota-
tional and translational motion, we split v(2)→(1) into the

flows induced by local moments, v
(2)→(1)
M (rotation), and

those induced by local forces, v
(2)→(1)
F (translation). We

then write v(2)→(1) = v
(2)→(1)
M +v

(2)→(1)
F , and calculate the

values of each term in the long-wavelength limit, h ≪ L.
In order to simplify the presentation, we focus in de-

tail on the derivation of the first velocity term, v
(2)→(1)
M ,

induced by the rotational motion of filament #2, while

the value of v
(2)→(1)
F is computed along similar lines (see

below). Note that while v
(2)→(1)
M is exactly zero for non-

rotating filaments, e.g., in the case of the planar waving
flagella of spermatozoa, it will be important in other sit-
uations involving rotation, e.g., the dynamics of bacterial
flagellar filaments. Since a ≪ h, the flow may be described
by a superposition of flow singularities. If m(2) denotes
the hydrodynamic torque density acting on filament #2,
the flow is given as a line of integral of rotlets (or point
torques) as [35]

v
(2)→(1)
M (s) =

∫ L

0

−m(2)(s′)

8πµ
×

R(s, s′)

R(s, s′)3
ds′, (2)

where s and s′ are the arclengths along filaments #1
and #2 and R(s, s′) = r(1)(s) − r(2)(s′) is the relative
position vector with magnitude R (all quantities are im-
plicit functions of time). If filament #2 rotates relative to
the background fluid with rotation rate ω(2)(s′), then it is
a classical result that

m
(2)(s′) = −ξrω

(2)(s′)t(2)(s′), (3)

where the resistance coefficient in rotation is ξr = 4πµa2.
We nondimensionalise lengths by L, leading to two di-

mensionless numbers: the filament aspect ratio, ϵa = a/L,
and the distance-to-size ratio, ϵh = h/L. Times are nondi-
mensionalised by a relevant, problem-specific time scale T .
The integral from eq. (2) becomes then in dimensionless
form

v̄
(2)→(1)
M (s̄) =

ϵ2a
2

∫ 1

0
ω̄(s̄′)(2)t(2)(s̄′) ×

R̄(s̄, s̄′)

R̄(s̄, s̄′)3
ds̄′, (4)

and we drop the bars for notation convenience.
Since we are in the long-wavelength limit, it is nat-

ural to use Cartesian coordinates (fig. 2). We denote
by ez the unit vector along the mean direction of the
(approximately) parallel filaments and describe the in-
stantaneous geometry of each filament as r(i)(t, s(i)) =
[ϵhx(i)(t, s(i)), ϵhy(i)(t, s(i)), s(i)], where s(1) ≡ s and
s(2) ≡ s′. Introducing the notation ∆ = s − s′ and
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Fig. 2: (Colour online) (a) Illustration of method to compute
hydrodynamic interactions. The integration region is split into
a local region of size 2δ and a nonlocal region where the sep-
aration of lengths ϵh ≪ δ ≪ 1 may be exploited to compute
the flow separately. (b) Geometric relations between d, d0 and
R: R is the distance between points on two filaments, ϵhd the
projection in x-y plane and ϵhd0 the local separation distance.

the planar vector d(s; s′) = [x(1)(s) − x(2)(s′), y(1)(s) −
y(2)(s′), 0] of magnitude d = |d|, then the relative position
vector R is written by separating the direction along and
perpendicular to the filaments as R = ∆ez + ϵhd, with
magnitude R = (∆2 + ϵ2hd2)1/2.

The schematic representation of how the integration is
performed is shown in fig. 2(a) with detailed notation in
fig. 2(b). Our method is inspired by a classical calculation
due to Lighthill where, in order to describe the flow in-
duced by the motion of a single filament, he separated the
flow induced by point singularities into local and nonlo-
cal terms using an intermediate length scale on which the
filament was still slender but almost straight [9]. We intro-
duce an intermediate length scale δ satisfying ϵh ≪ δ ≪ 1
and split the integration into two regions: 1) a nonlocal
region, |∆| ≥ δ, where the distance between two points
on the filaments is dominated by R ∼ |∆| since ϵh ≪ δ
(resulting velocity denoted vNL); and 2) a local region
where |∆| ≤ δ, and for which in the limit δ ≪ 1 we can
approximate R ∼ (∆2 + ϵ2hd2

0)
1/2, where d0 is the local

filament-filament distance d0(s) = d(s; s′ = s) (resulting
velocity denoted vL). The final result, sum of vNL and
vL, should then be independent of the value of δ.

Changing the variable of integration in eq. (4) to ∆ =
s−s′, the nonlocal contribution to the integral is given by

v
NL
M =

ϵ2a
2

(

∫ −δ

s−1
+

∫ s

δ

)

[

ω(2)
t
(2)

]

(s−∆)
×

R

R3
d∆. (5)

Since |∆| ≥ δ and ϵh ≪ δ, we have R(s; s − ∆) ≈ |∆|.
Writing R = ∆ez + ϵhd(s; s − ∆) and t(2)(s − ∆) = ez +

ϵht⊥(s − ∆), where t⊥(s − ∆) =
(

∂x(2)

∂s′ , ∂y(2)

∂s′ , 0
)

∣

∣

s′=s−∆
,

the integrand from eq. (5) is given by

ϵhω(2)(s−∆)[ez ×d(s; s−∆)+t⊥(s−∆)×∆ez]
1

|∆|3
. (6)

The leading-order term in eq. (6) diverges as 1/∆3 in the
limit δ → 0, leading to a final asymptotic integral as

v
NL
M =

ϵ2aϵh

2

(
∫ s−1

−δ
+

∫ s

δ

)

ω(2)(s − ∆)ez ×d(s; s − ∆)
d∆

∆3
.

(7)
In the limit where δ → 0, the result in eq. (7) diverges
and is dominated by the behavior of the integrand near
the boundary, i.e., ∆ = 0. Calling d0 the local direction
between the filaments perpendicular to their long axis, i.e.,
d0 = d(s; s) (fig. 2(b)), we obtain in the limit δ → 0

v
NL
M =

ϵ2aϵh

2δ2
ω(2)(s)ez × d0, (8)

at leading order.
Next we consider the local integration where we have

v
L
M =

ϵ2a
2

∫ δ

−δ
ω(2)(s − ∆)t(2)(s − ∆) ×

R

R3
d∆. (9)

In the local region, we can Taylor-expand ω(2) and d

around ∆ = 0 (i.e., around s′ = s) as

(

ω(s − ∆)(2)

d(s − ∆)

)

=

(

ω(s)(2)

d(s)

)

+ ∆

(

ω(2)
0∆

d0∆

)

+ O(∆2),

(10)
where, under the long-wavelength approximation, the

derivatives ω(2)
0∆ and d0∆ are of order one (i.e., the geom-

etry and the rotation of the filaments vary on the length
scale L). In that case, each term in the integrand can be
expanded and we get at leading order that only the local
values of the rotation rate, ω(2)(s), and the force, f (2)(s),
enter the problem, with a local flow given by

v
L
M =

ϵ2aϵh

2
ω(2)(s)

∫ δ

−δ

ez × d0

(∆2 + ϵ2hd2
0)

3
2

d∆, (11)

which may be evaluated analytically with an asymptotic
expression given by

v
L
M =

ϵ2aϵh

2
ω(2)(s) ez × d0

(

2

ϵ2hd2
0

−
1

δ2

)

. (12)

Adding up eqs. (8) and (12), we obtain the final flow
induced by filament #2, which is independent of the value
of δ, given at leading order by

v
(2)→(1)
M =

ϵ2a
ϵhd2

0

ω(2)(s)ez × d0. (13)

A similar approach may be used to evaluate the second

velocity term, v
(2)→(1)
F , induced by the forcing of filament
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#2 on the fluid. In that case, the flow is given by a line
integral of stokeslet singularities (point forces) as

v
(2)→(1)
F (s) =

∫ L

0

−f (2)(s′)

8πµ
·
(

I

R
+

RR

R3

)

ds′, (14)

where I is the identity tensor and f (2) the force density act-
ing on filament #2. One notable difference between eq. (2)
and eq. (14) is that the integrand in eq. (2) is known ex-
plicitly (filament rotation), whereas that in eq. (14) has
in it the quantity we are trying to determine, specifically
the unknown force density, f (2). We can however proceed
as above as long as f (2) varies on the length scale L, and
similarly for the other filament, so that the resulting ve-
locities in eq. (1) will lead to a linear system to invert to
determine both f (1) and f (2). After nondimensionalising
force densities by 8πµL/T , the nonlocal contribution of
the integral in eq. (14) is written as

v
NL
F = −

(

∫ −δ

s−1
+

∫ s

δ

)

(

I

R
+

RR

R3

)

· f (2)(s − ∆)d∆,

(15)
whose evaluation at leading-order value is given by the
logarithmic term

v
NL
F = 2(ln δ)(I + ezez) · f (2)(s). (16)

Similarly, the local portion of the integral, written as

v
L
F = −

∫ δ

−δ

(

I

R
+

RR

R3

)

· f (2)d∆, (17)

can be Taylor-expanded and exactly integrated to lead to
the local logarithmic dependence

v
L
F = 2 ln

(

ϵhd0

δ

)

(I + ezez) · f (2)(s). (18)

Adding eqs. (16) and (18) we obtain the final force term as

v
(2)→(1)
F = 2 ln (ϵhd0) (I + ezez) · f (2)(s), (19)

for the velocity induced by the unknown force density.
Returning to dimensional quantities eqs. (13)–(19) can

be written as

v
(2)→(1)
M =

(

a

h(s)

)2

ω(2)(s)ez × h(s), (20)

v
(2)→(1)
F =

1

4πµ
ln

(

h(s)

L

)

(I + ezez) · f (2)(s), (21)

where h(s) is the dimensional local vector between the
filaments, i.e., h(s) = r1(s) − r2(s), and h(s) its norm.

The results in eqs. (20), (21), together with eq. (1) are
the main new results of this paper. They provide a linear,
local relationship between the force density on each fila-
ment (f (i)) and the kinematics of their motion (ω(j) and
∂r(k)/∂t). As a remark, we note that one is not allowed to

formally take the limit h → 0 or h → ∞ in eqs. (20), (21),
as both violate the limit a ≪ h ≪ L in which these for-
mulae were derived.

For planar motion (ω(j) = 0 for j = 1, 2), the algebra
simplifies further. In eq. (1), since h ≪ L, the tangent
vectors are t = ez at leading order in h/L and since ξ⊥ ≈
2ξ∥ [9] we have for each filament

ξ⊥I + (ξ∥ − ξ⊥)tt ≈ ξ⊥

(

I −
1

2
ezez

)

≡ J, (22)

so that on each filament i we have the dynamic balance

f
(i)(s, t) − J · v(j)→(i) = −J ·

∂r(i)

∂t
, (23)

with j ̸= i. Given the tensorial operator appearing in
eq. (21), we have to evaluate

(

I −
1

2
ezez

)

· (I + ezez) = I, (24)

and we further note that ξ⊥/4πµ ≈ 1/ln(1/ϵa) [9]. As a
result, eq. (23) simplifies for each filament to

f
(i)(s, t) +

ln(h(s, t)/L)

ln(a/L)
f
(j)(s, t) = −J ·

∂r(i)

∂t
, (25)

with j ̸= i. Defining λ(s, t) ≡ ln(h(s, t)/L)/ln(a/L) and
Λ(s, t) ≡ 1 − λ2(s, t) (note that Λ > 0 since a < h), this
linear system can be inverted by hand and we obtain the
analytical formula for the force density f (i)(s, t) acting on
filament i as

f
(i)(s, t) = −

1

Λ(s, t)
J ·

(

∂r(i)

∂t
− λ(s, t)

∂r(j)

∂t

)

. (26)

We now illustrate predictions of our theory on a simple
model of two rigid filaments undergoing planar motion,
and compare with numerical slender-body simulations.
Consider two straight coplanar filaments of radius a,
length L with centerlines located at [0, ϵy1(z, t), z] and
[0, h0 + ϵy2(z, t), z]. Assume for simplicity small ampli-
tude motion ϵ ≪ 1 and let us use our results to calculate
the force density in the y-direction, f (i) = f (i) · ey, in

powers of the amplitude (f (i) = ϵf (i)
1 + ϵ2f (i)

2 + . . .) in
the limit a ≪ h0 ≪ L. Writing h = h0 + ϵh1, a Taylor
expansion gives

ln (h/L) = ln (h0/L) + ϵh1/h0 + O(ϵ2), (27)

which we use to evaluate eq. (26) at order ϵ, leading to

f (i)
1 =

ξ⊥

1 − [ln(h0/L)/ ln(a/L)]2

×
(

ln(h0/L)

ln(a/L)

∂y(j)

∂t
−

∂y(i)

∂t

)

. (28)

At order ϵ2, eq. (25) becomes

f (i)
2 +

ln(h0/L)

ln(a/L)
f (j)
2 = −

h1

h0 ln(a/L)
f (j)
1 , (29)
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Fig. 3: (Colour online) Net force induced on the fluid by a
two-rod pump, F/µωL2, as a function of the phase difference,
φ, between the rods. Dashed line and symbols: slender-body
theory simulations; Solid line: theory (eq. (31)). The dimen-
sionless distance between the rods is h/L = 0.1, their aspect
ratio a/L = 0.025 (so that a/h = 0.25) and the motion ampli-
tude is ϵℓ = h/10.

Assuming that both y1 and y2 are periodic in time on the
same period, then a time-average of eq. (29) using eq. (28)
leads to identical mean force densities along both filaments

as ⟨f (1)
2 ⟩ = ⟨f (2)

2 ⟩ = f2(s), where

f2(s) =
ξ⊥ ln(a/L)

2h0[ln(h0/L) + ln(a/L)]2

〈

y−
∂y+

∂t

〉

, (30)

with y+ ≡ y(1) + y(2) and y− ≡ y(2) − y(1).
For illustration purposes, let us assume that the first

filament undergoes sinusoidal rigid-body motion of the
form y1(t) = R(

∑

n ℓn exp inωt) while the second fila-
ment has the same motion with a phase difference φ, i.e.,
y2(t) = y1(t + φ). Our theory, eq. (30), predicts that the
two-rod system will pump the fluid by exerting a net force
on it, F , of magnitude

F2 =
4πµωL

2h0[ln(h0/L) + ln(a/L)]2

∑

n

n|ℓn|2 sin(nφ). (31)

Clearly eq. (31) predicts zero net force for in-phase (φ = 0)
and out-of-phase (φ = π) motion and thus an optimal
phase difference between the two filaments exits.

We test in fig. 3 this theoretical prediction against a
numerical implementation of nonlocal slender-body appro-
priate for interactions [12,36] in the case n = 1. We numer-
ically solve for the force distribution along each filament
using a Galerkin method based on Legendre polynomi-
als. The net force on each filament is then computed at
15 equidistant points within a period, and the mean force
calculated. While the theoretical approach (eq. (31)) was
derived only asymptotically in the limit where a/h → 0
and h/L → 0 we see that even when these parameters are
not asymptotically small (here a/h = 0.25 and h/L = 0.1),
the theoretical prediction (solid line) is able to capture
the computational results (dashed line and symbols) with
good approximation. In contrast, far-field predictions are
off by more than two orders of magnitude.

In summary, we have used an asymptotic method to
compute the hydrodynamic interactions between nearby
filaments undergoing arbitrary rotation and translation.
The key ingredient allowing the calculation to be carried
out is to exploit the separation of length scales a ≪ h ≪ L
which enables a representation of the flow as a superpo-
sition of fundamental singularities whose strengths vary
only on long wavelengths compared to the separation be-
tween the filaments. While the work above was derived
only in the case of filaments with main directions parallel
to each other, future work with be required to generalise
the results to the case of nonparallel filaments; we specu-
late that the “local” aspect of the final equation is likely
to involve the point on each filament which is nearest to
the other.

Like any other asymptotic derivation, a crucial question
in our work is that of the magnitude of the error (i.e. the
order of the next-order terms). To fix ideas, consider first
a single filament undergoing planar deformation with a
centerline described by [x, y(x, t)]. The classical formula
for the leading-order force density, f , on the filament is
f = −(ξ⊥∂y/∂t)ey, with i) logarithmic corrections in the
aspect ratio of the filament from next-order terms beyond
resistive-force theory, i.e., relative error O(1/ ln(L/a)) [34]
and ii) algebraic corrections in the typical slope of the fil-
ament, i.e., relative error O(h/L) due to the difference
between the true instantaneous geometry of the filament
and its mean direction [5]. The same relative errors ap-
ply to our current work. Additional errors arise in our
work near the ends of the filaments. Specifically, in or-
der for the nonlocal integrations to be carried out near
the ends of the filaments, the arclength s needs to satisfy
h ≪ min(s, L − s), with logarithmically (respectively, al-
gebraically) small relative errors in h/ min(s, L − s) from
filament translation (respectively, rotation). Physically,
this logarithmic accuracy of local hydrodynamics is the
equivalent to that of resistive-force theory but extended
to multiple filaments. The portion of the filament with an
admissible arclength s satisfying min(s, L − s) ≫ h is of
size L−2s0, with s0 ≫ h. Since we are in the limit h ≪ L,
the geometric mean s0 =

√
hL satisfies the intermediate

limit L ≫ s0 ≫ h. As a consequence, our results are able
to provide the value of the hydrodynamic force density on
the majority of the filaments, namely at least a portion of
size L − 2

√
hL.

We finally point out that while the addition of higher-
order flow singularities than rotlet and stokeslets along
each filament would improve the analysis, the resulting
additional terms would decay spatially algebraically and
faster than the terms in eqs. (20), (21), which provide thus
the leading-order contribution in the limit a ≪ h ≪ L.

The framework developed in this paper will allow
to address theoretically a number of problems in the
biomechanics of filaments where nonlocal hydrodynamic
interactions may be integrated out analytically for ex-
ample in cytoskeletal mechanics, hydrodynamic inter-
actions and cellular propulsion, beyond the classical,
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complementary, far-field approach. For example, two
particular problems in the realm of biological synchronisa-
tion [11] could be tackled: the requirements for attraction
and synchronisation between the rotating helical flagel-
lar filaments of bacteria [37,38] and the generation of
metachronal waves in cilia arrays [4,24,25].

Our results should also be applicable to a broad range of
problems in physical sciences where slender bodies inter-
act through a viscous fluid, such as liquid crystals. As an
example, a set of recent measurements showed strong in-
teractions between living organisms and a liquid crys-
tal [39], a situation which could be addressed using our
framework.
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