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The acoustofluidic method holds great promise for manipulating micro-organisms. When
exposed to the steady vortex structures of acoustic streaming flow, these micro-organisms
exhibit intriguing dynamic behaviours, such as hydrodynamic trapping and aggregation.
To uncover the mechanisms behind these behaviours, we investigate the swimming
dynamics of both passive and active particles within a two-dimensional acoustic streaming
flow. By employing a theoretically calculated streaming flow field, we demonstrate the
existence of stable bounded orbits for particles. Additionally, we introduce rotational
diffusion and examine the distribution of particles under varying flow strengths. Our
findings reveal that active particles can laterally migrate across streamlines and become
trapped in stable bounded orbits closer to the vortex centre, whereas passive particles
are confined to movement along the streamlines. We emphasise the influence of the flow
field on the distribution and trapping of active particles, identifying a flow configuration
that maximises their aggregation. These insights contribute to the manipulation of
microswimmers and the development of innovative biological microfluidic chips.

Key words: micro-organism dynamics, swimming/flying

1. Introduction
Microswimmers in flow exhibit a wide range of fascinating behaviours, such as directional
alignment (Hope et al. 2016), hydrodynamic trapping (Sipos et al. 2015) and aggregation
(Torney & Neufeld 2007), all of which are heavily influenced by their surrounding flow
environment. The hydrodynamic interactions between microswimmers’ activity and the
flow field play a crucial role in shaping these dynamics (Lauga 2016; Mathijssen et al.
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Figure 1. Optical image of the acoustic streaming flow generated by the oscillating microbubble in experiment,
reproduced from Ahmed et al. (2016) under terms of the CC-BY 4.0. licence. Copyright 2016 The Authors,
published by Springer Nature.

2019; Baker et al. 2019). Understanding these hydrodynamic interactions is critical, as
they not only govern microswimmer behaviour but also have important applications in
areas like targeted drug delivery (Park et al. 2017), bioengineering (Liu et al. 2022)
and environmental monitoring (Liang et al. 2018). As a result, investigating the physical
mechanisms behind microswimmer–flow interactions, and leveraging this knowledge for
microswimmer manipulation, has become a key focus in the study of active matter
(Bechinger et al. 2016; Wheeler et al. 2019; Aranson 2022).

Early research on swimming behaviours of microswimmers primarily focused on planar
shear flow environments (Zöttl & Stark 2012; Kantsler et al. 2014; Lee et al. 2021; Rubio
et al. 2021). When bacteria move in the shear flow, they tend to accumulate in regions of
high shear rate (Rusconi, Guasto & Stocker 2014), which also is theoretically demonstrated
by Vennamneni, Nambiar & Subramanian (2020). They find that the interaction between
the shear rate and bacteria is the crucial factor for achieving migratory motion and aggre-
gation behaviour. More recently, the study of microswimmers has been extended to their
swimming dynamics in vortex flows (Berman & Mitchell 2020). For instance, Marcos &
Stocker (2006) demonstrate that bacteria align with streamlines in strong vortices, a result
consistent with our findings for passive particles. For gyrotactic micro-organisms, such
as algae, studies by Durham et al. (2011, 2013) have highlighted how gyrotaxis influences
their aggregation dynamics in vortical flows. Furthermore, Sokolov & Aranson (2016) find
that elongated bacteria in the vortex flow generated by a rotating microparticle cross the
streaminline and form a depletion zone near the vortex core. Tanasijevic & Lauga (2022)
have employed a theoretical model to demonstrate that the depletion zone is caused by the
interaction between particles and the vortex flow. However, in the Gaussian vortex flow
field, the trapped active particles aggregate around the vortex core to form a high-density
region (Arguedas-Leiva & Wilczek 2020). Additionally, dumbbell-shaped particles exhibit
spiral motion in a two-dimensional steady vortex flow, with the shape of their orbits
depending on their initial position and direction (Yerasi, Govindarajan & Vincenzi 2022).

Given the interaction between the particles and background flow field, the use of
microfluidic chips has attracted widespread interest in the biomedical field (Collins et al.
2017; Lu et al. 2019; Geng et al. 2023; Kutluk, Viefhues & Constantinou 2024; Liu et al.
2024). The acoustic streaming flow generated by an ultrasonically driven and trapped
microbubble is a primary method used in microfluidic chips for manipulating particles
(Marmottant & Hilgenfeldt 2004; Chen et al. 2016; Zhang et al. 2020). As shown in
figure 1, the trapped cavitated microbubble undergoes radial and tangential oscillations
under ultrasonic excitation, producing a stable acoustic streaming flow comprising a
pair of vortices (Ahmed et al. 2016). Rogers & Neild (2011) find that the behaviour
of passive particles within the acoustic streaming flow is influenced by their size and
density, making this method widely applicable in the separation of cells (Li et al. 2021;
Gao et al. 2022). Additionally, experimental evidence demonstrates that Escherichia coli
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can be collected near the vortex centre of the acoustic streaming flow generated by an
oscillating bubble, leading to the formation of a biofilm structure (Yazdi & Ardekani 2012).
Further experiment has demonstrated that multiple oscillating microbubbles of varying
sizes can create an acoustic network flow, which facilitates the non-destructive pumping
of Escherichia coli (Gao et al. 2020). Despite these advancements, the effects of acoustic
streaming flow on the swimming dynamics and aggregation behaviours of active particles,
as well as the underlying physical mechanisms governing these processes, remain poorly
understood and require further elucidation.

Inspired by the observed aggregation behaviour of bacteria in an acoustic streaming field
during experiments (Yazdi & Ardekani 2012), we have conducted a detailed investigation
into the swimming dynamics of active particles in the acoustic streaming flow generated by
an oscillating microbubble. We employ an approximate solution for the acoustic streaming
flow (Spelman & Lauga 2017), and then we establish a deterministic model to predict the
trapped bounded orbits of both passive and active particles. Our results shows that active
particles are trapped in the bounded orbits near the vortex centre due to their activity, while
passive particles are restricted to moving along the streamlines. The stable motion region
of active particle depends on the streaming flow, which further proves the dependence
of active micro-organisms on the environment. To further understand the behaviour of
particles in a more realistic environment, we introduce rotational noise to analyse the
trapping and distribution of both passive and active particles. We find that active particles
exhibit a non-uniform distribution within the streaming flow and we identify a flow
configuration that maximises the degree of aggregation of the active particles. Our results
provide insights for the use of microfluidic chips in the rapid detection and separation of
micro-organisms.

2. Set-up and acoustic streaming flows

2.1. Set-up and non-dimensionalisation
The microswimmer is modelled as a spheroidal particle characterised by an aspect ratio λ,
defined as the ratio of the long axis to the short axis. We assume that the swimmer main-
tains a constant intrinsic swimming speed v0 p, where p denotes the swimmer’s orienta-
tion. For an elongated swimmer, the orientation aligns with the direction of the long axis.

The streaming flow is generated by an acoustically driven oscillating microbubble with
radius a. For simplicity, we assume that the bubble is fixed in an unbounded domain and
ignore wall effects. In addition, we assume that the motion of the bubble’s surface is
axisymmetric, incorporating both radial and tangential oscillations. The surface of the
microbubble is presumed to oscillate at an angular frequency ω with a small amplitude
εa, where ε� 1. We employ spherical coordinates (r, ϕ) as illustrated in figure 2. Using
a Lagrangian framework, the boundary shape of the microbubble is described by its radial
position R and angular position Φ, measured at the location of a material point initially at
(a, ϕ). Due to the axisymmetry, the surface oscillation modes can be expressed as a series
of orthogonal basis functions formed by Legendre polynomials, presented as follows:

R(ϕ, t)= a − εa
∞∑

n=0

Vn Pn(cos ϕ)ei(ωt+ π
2 ), (2.1)

Φ(ϕ, t)= ϕ + ε

∞∑
n=1

Wn

⎛
⎝∫ 1

cos ϕ Pn(x)dx

sin ϕ

⎞
⎠ ei(ωt+ π

2 ),
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Figure 2. (a) Illustration of a microswimmer moving in the acoustic streaming flow generated by an oscillating
bubble. The microswimmer is depicted as an orange ellipsoid particle located at (r ,ϕ) with constant velocity v0
along p. The magnitude of scaled streaming flow is |ψ |/(ε2δωa3) at V0 = 0.4, V1 = 1. (b),(c) Time evolution
results of the real part of boundary position (b) R and (c) Φ of the oscillating bubble for one period based on
the same parameters with representative value ε = 0.01.

where Vn and Wn are arbitrary complex constants determined by the surface motion, and
Pn(x) is the Legendre polynomial of degree n. The flow field is governed by the Navier–
Stokes equation:

∂u
∂t

+ (u · ∇)u = − 1
ρ

∇ p + ν∇2u, (2.2)

where u = (ur , uϕ) represents the fluid velocity and p is the pressure. Since the flow
generated by the oscillating bubble is axisymmetric, we introduce a streamfunction
ψ(r, ϕ). In spherical coordinates, the fluid velocities are represented as follows:

ur = 1
r2 sin ϕ

∂ψ

∂ϕ
, uϕ = − 1

r sin ϕ
∂ψ

∂r
. (2.3)

Substituting (2.3) into (2.2), the Navier–Stokes equation becomes

∂
(
D2ψ

)
∂t

+ 1
r2

[
− 1

sin ϕ
∂ψ

∂r

∂
(
D2ψ

)
∂ϕ

+ 1
sin ϕ

∂ψ

∂ϕ

∂
(
D2ψ

)
∂r

+ 2D2ψLψ

]
= νD2

(
D2ψ

)
,

(2.4)

where the operators are

D2 = ∂2

∂r2 + 1
r2

(
∂2

∂ϕ2 − cos ϕ
sin ϕ

∂

∂ϕ

)
, L = cos ϕ

sin2 ϕ

∂

∂r
− 1

r sin ϕ
∂

∂ϕ
· (2.5)

On the surface of the bubble, the fluid velocity satisfies the boundary condition

ur (R, Φ)= ∂R

∂t

∣∣∣∣(R,Φ), uϕ(R, Φ)= R
∂Φ

∂t

∣∣∣∣
(R,Φ)

. (2.6)

In addition, the incorporation of an additional boundary condition is crucial to guarantee
the absence of any tangential stress exerted on the surface of an oscillating bubble:[

1
r

∂ur

∂ϕ
+ ∂uϕ
∂r

− uϕ
r

]∣∣∣∣
(R,Φ)

= 0. (2.7)

We will sketch the asymptotic solution of (2.4) in § 2.2. We assume that the disturbance
of the flow field due to the active particle is negligible. Additionally, the hydrodynamic
interactions between the active particle and the bubble surface are neglected in this study,
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as their effects are significantly weaker compared with the dominant influence of the
acoustic streaming flow (Spagnolie et al. 2015). Consequently, the motion of the particle,
as it drifts with the flow, and the rotation of the particle can be determined by Jeffery’s
equation (Jeffery 1922). The position of the particle r and the orientation p are governed
by the following equations:

dr
∂t

= v0 p + u,

d p
∂t

= 1
2
(∇ × u)× p + γ (E · p − ( p · E · p) p), (2.8)

where E = (∇u + ∇uT )/2 is the strain rate tensor of the flow field, γ = (λ2 − 1)/(λ2 + 1)
represents the shape parameter of particle, λ represents the ratio of the long axis to the
short axis of microswimmer, and (−1< γ < 0), (γ = 0) and (0< γ < 1) represent oblate
spheroid, sphere and prolate ellipsoid, respectively.

Here, we first focus on obtaining solutions of the acoustic streaming flow field. We
choose ω−1 as the relevant time scale and the radius a of the oscillating bubble as
characteristic length to non-dimensionalise (2.4). Consequently, the dimension of the
streamfunction is ωa3. The dimensionless form of (2.4) is then as follows:

∂
(
D2ψ

)
∂t

+ 1
r2

[
− 1

sin ϕ
∂ψ

∂r

∂
(
D2ψ

)
∂ϕ

+ 1
sin ϕ

∂ψ

∂ϕ

∂
(
D2ψ

)
∂r

+ 2D2ψLψ

]
= δ2 D2

(
D2ψ

)
.

(2.9)

Here, δ2 = ν/(ωa2), where δ represents the ratio of the viscous penetration length scale,
(ν/ω)1/2, to the bubble radius, a. The kinematic viscosity of a Newtonian fluid is typically
10−6 m2 s−1. In experiments, the range of ωa is O(105)−O(107)µm s−1 (Yazdi &
Ardekani 2012). The bubble radius is typically set to be a = 10 µm. Therefore, we can
estimate that the range of δ is O(10−1)−O(1), which means that the viscous penetration
length is smaller compared with the radius of the oscillating bubble. Furthermore, the
relative oscillating amplitude, ε, is experimentally measured to be O(10−2)−O(10−1).
Thus, we assume the asymptotic limit ε� δ� 1, which is used to outline the asymptotic
analysis in the following section. These estimates of ε and δ are primarily provided
to illustrate that the asymptotic conditions can be reasonably satisfied, ensuring that
the analytical derivation aligns with plausible experimental parameter ranges. Detailed
discussions can be found from Spelman & Lauga (2017).

2.2. Asymptotic solution of the streaming flow
In this section, we outline the main steps to calculate the asymptotic solution of the
acoustic streaming flow, reproducing the known results from Spelman & Lauga (2017)
to ensure consistency with foundational work and to provide necessary details for the
subsequent analysis of particle dynamics. Given that the oscillation of the bubble is of
the order of ε, it is straightforward to expand the flow field in orders of ε:{

ψ, ur , uϕ
}= ε

{
ψ(1), u(1)r , u(1)ϕ

}
+ ε2

{
ψ(2), u(2)r , u(2)ϕ

}
+ o

(
ε3
)
. (2.10)

At the order of ε, (2.9) is expressed as follows:

∂
(
D2ψ(1)

)
∂t

= δ2 D4ψ(1). (2.11)
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For the boundary conditions, we consider three modes in (2.1): (V0, V1,W1). These
modes are minimal yet sufficient to generate a streaming flow (Longuet-Higgins 1998).
By expanding (2.6) and (2.7), we obtain the boundary conditions at the first order:

∂ψ(1)

∂ϕ

∣∣∣r=1 = [V0 + V1 cos ϕ] sin ϕeit ,

∂ψ(1)

∂r

∣∣∣∣r=1 = −1
2

W1 sin2 ϕeit , (2.12)(
−∂

2ψ(1)

∂r2 + 2
∂ψ(1)

∂r
+ ∂2ψ(1)

∂ϕ2 − cos ϕ
sin ϕ

∂ψ(1)

∂ϕ

)∣∣∣∣∣
r=1

= 0.

In view of the oscillatory boundary condition (2.12), the first-order solution will be
ψ(1) ∝ eit . By applying separation of variables twice, we can solve for the first-order
streamfunction:

ψ(1) = eit
[

V0(1 − cos ϕ)+ 1
2

(
2Aδ2√r

(1 + i)2
K 3

2

(
(1 + i)r√

2δ

)
+ B

1
r

)
sin2 ϕ

]
,

A = −1

K 3
2

(
1+i√

2δ

) (
1√
2δ
(1 + i)+ 1 + √

2δ
(i − 1)

4

)
(W1 + V1)+ O

(
δ2
)
, (2.13)

B = V1 +
√

2δ(1 − i)

2
(W1 + V1)− iδ2(W1 + V1)+ O

(
δ3
)
,

W1 = −V1 + √
2δ

6
1 + i

V1 + 18iδ2V1 + O
(
δ3
)
,

where K 3
2
(r) is the modified Bessel function of the second kind of order 3/2. As we can

see, the coefficient W1 is determined by V1 as a result of the zero tangential stress condition
(2.7) imposed on the bubble surface. To obtain a non-zero time-averaged flow, we need to
consider the next order. At the second order, the equation becomes

− ∂
(
D2ψ(2)

)
∂t

+ δ2 D2
(

D2ψ(2)
)

(2.14)

= 1
r2

[
− 1

sin ϕ
∂ψ(1)

∂r

∂
(
D2ψ(1)

)
∂ϕ

+ 1
sin ϕ

∂ψ(1)

∂ϕ

∂
(
D2ψ(1)

)
∂r

+ 2D2ψ(1)Lψ(1)
]
.

This equation cannot be solved explicitly. Instead, we consider its time-averaged solution,
〈ψ(2)〉, which is independent of time and satisfies

δ2 D4
〈
ψ(2)

〉

=
〈

1
r2

[
− 1

sin ϕ
∂ψ(1)

∂r

∂
(
D2ψ(1)

)
∂ϕ

+ 1
sin ϕ

∂ψ(1)

∂ϕ

∂
(
D2ψ(1)

)
∂r

+ 2D2ψ(1)Lψ(1)
]〉
.

(2.15)

Equation (2.15) can be solved using matched asymptotics. Since the interaction between
the bubble and the fluid occurs over a short range, we consider a boundary layer adjacent
to the bubble, with a thickness of the order of δ. The distance from the bubble is rescaled
as η= (r − 1)/δ. When we scale (2.15), the left-hand side is of the order of 1/δ2 and the
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right-hand side can be carefully expanded in orders of δ, with the leading term being of the
order of 1/δ. Consequently, the governing equation in the inner region has the following
structure:

∂4 〈ψ(2)〉
∂η4 =

[
δC1 + δ2(C21 + C22η)

]
e
− 1+i√

2
η

sin2 ϕ +
[
δD1 + δ2(D21 + D22η)

]
e
− 1+i√

2
η

sin2 ϕ cos ϕ + δ2 E2e
− 1−i√

2
η

sin2 ϕ cos ϕ + O
(
δ3
)
, (2.16)

where C1,C21,C22, D1, D21, D22, E2 are complex constants that are functions of V0
and V1. Correspondingly, we rescale and expand the boundary conditions. The no-slip
boundary condition can then be written in the following form:

∂
〈
ψ(2)

〉
∂ϕ

|η=0 =
(

a0 + δa1 + δ2a2

)
sin ϕ cos ϕ

+
(

b0 + δb1 + δ2b2

) (
3 cos2 ϕ − 1

)
sin ϕ + O

(
δ3
)
, (2.17)

∂
〈
ψ(2)

〉
∂η

|η=0 =
(
δc1 + δ2c2

)
sin2 ϕ +

(
δd1 + δ2d2

)
sin2 ϕ cos ϕ + O

(
δ3
)
,

where a0, a1, a2, b0, b1, b2, c1, c2, d1, d2 are complex constants that are functions of V0
and V1. Combining (2.16) and (2.17), the inner flow can be solved order by order. We
will match the inner solution to the outer solution. As η increases to infinity, the solution
behaves as follows:〈
ψ(2)

〉
=

[
G0 + G1η+ G2η

2 + G3η
3
]
sin2 ϕ +

(
H0 + H1η+ H2η

2 + H3η
3
)

sin2 ϕ cos ϕ,

(2.18)

The constants, Gi , Hi , i = 0, 1, 2, 3, can be expanded as orders of δ:

Gi = Gi0 + δGi1 + δ2Gi2 + O
(
δ3
)
, Hi = Hi0 + δHi1 + δ2 Hi2 + O

(
δ3
)
. (2.19)

In the outer region where r � 1, by substituting (2.13) into the right-hand side of (2.15),
we find it decays rapidly, of the order of r−2e−r , due to the appearance of the modified
Bessel functions and their derivatives. Consequently, we can neglect these terms and solve
the resulting homogeneous equation:

D4
〈
ψ(2)

〉
= 0. (2.20)

Considering the form of the inner flow in (2.18) and applying separation of variables to
(2.20), the outer flow takes the following form:〈

ψ(2)
〉
=

(
T1r−1 + T2r

)
sin2 ϕ +

(
T3r−2 + T4

)
sin2 ϕ cos ϕ, (2.21)

where Ti (i = 1, 2, 3, 4) are constants to be determined. Note that we have already applied
the boundary condition that the fluid velocity decays to zero at infinity. To match (2.21) to
(2.18), we substitute r = 1 + δη and expand (2.21) in orders of δ. The constants Ti are also
expanded as follows:

Ti = Ti0 + δTi1 + δ2Ti2 + O(δ3). (2.22)
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Comparing the coefficients in (2.19) and (2.22) to the order of δ, we have

G00 = T10 + T20,G01 = T11 + T21,G11 = −T10 + T20,G12 = −T11 + T21, (2.23)
H00 = T30 + T40, H01 = T31 + T41, H11 = −2T30, H12 = −2T31. (2.24)

In the derivations above, the complex constants, C1,C2, D1, D2, E2, a0, a1, a2, b0, b1,
b2, c1, c2, d1, d2, G00,G01,G11,G12, H00, H01, H11, H12, are given in Appendix A. In
the previous derivation, it is readily apparent that the flow field generated by oscillating
bubble exhibits the characteristic scale of ωa before conducting non-dimensionalisation.
Consequently, the dimensional form of the streaming flow can be written as

ur = ε2δωaūr , uϕ = ε2δωaūϕ,

ūr = 2
(

T1r−3 + T2r−1
)
δ−1 cos ϕ +

(
T3r−4 + T4r−2

)
δ−1(3 cos2 ϕ − 1), (2.25)

ūϕ =
(

T1r−3 − T2r−1
)
δ−1 sin ϕ + 2T3r−4δ−1 sin ϕ cos ϕ.

As previously mentioned, we assume ε� δ� 1. Thus, we set V0 = 0.4 and V1 = 1
to calculate a representative acoustic streaming flow field. The resulting flow field is
illustrated in figure 2(a), where the colour-coded background represents the magnitude
of streamfunction ψ and the streamlines indicate the flow direction. The steady acoustic
streaming flow is characterised by an axisymmetric double vortex structure. Under
the same parameter settings, we calculate the time evolution results of the boundary
deformations R and Φ over one period, as illustrated in figure 2(b,c). The results indicate
that the bubble boundary undergoes in-phase oscillations, exhibiting periodic deformation
behaviours. In this case, the fluid surrounding the bubble is pushed away along the z
axis and flows in from the x direction, leading to the occurrence of vortex structure.
Additionally, from (2.1), it can be deduced that the bubble undergoes in-phase oscillations
only when V0 and V1 are taken as real numbers. In this case, the coefficients Ti0 (i =
1, 2, 3, 4) of streamfunction ψ are purely imaginary and the streaming flow is therefore
generated at the order of ε2δ. However, when either V0 or V1 is a complex number, the
bubble undergoes out-of-phase oscillations, resulting in the leading order of the streaming
flow being O(ε2). Additionally, we select the same V0 and V1 to calculate the streaming
flow at orders ε2 and ε2δ, which are provided in Appendix A. We find that the streaming
flow of order ε2 is characterised as a Stokeslet (Longuet-Higgins 1998), while vortex
structures are generated at order ε2δ. In our following investigations, we choose V0 = 0.4
and V1 = 1 to examine the impact of vortex generated by the in-phase oscillation of the
bubble on particles in the acoustic streaming flow.

2.3. Motion of an active particle
In this section, we focus on the effect of acoustic streaming flow on the motion of a
particle within a two-dimensional framework. We assume that microorganisms respond
instantaneously to the time-averaged flow field because of the significant time scale
separation between the time-averaging process and the swimming dynamics of the
micro-organisms. Specifically, the time scale associated with the bubble oscillations that
determine the time-averaged flow field is O(10−6)−O(10−4)s (Yazdi & Ardekani 2012),
while the time scale of micro-organism motion is O(10−1)−O(1)s (Wadhwa & Berg
2022). We introduce a dimensionless quantity α= ε2δωa/v0, which represents the ratio
of characteristic flow strength ε2δωa to the intrinsic swimming speed v0. We rescale (2.8)
and express it in component form as follows:

1008 A32-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

15
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.158


Journal of Fluid Mechanics

dr

dt
= cos(θ − ϕ)+ αūr ,

dϕ
dt

= 1
r

sin(θ − ϕ)+ αūϕ
r
,

dθ
dt

= α

2r

(
∂(r ūϕ)

∂r
− ∂ ūr

∂ϕ

)
+ αγ

2

[
sin (2(θ − ϕ))

(
−∂ ūr

∂r
+ 1

r

∂ ūϕ
∂ϕ

+ ūr

r

)
(2.26)

+ cos(2(θ − ϕ))

(
r
∂

∂r

(
ūϕ
r

)
+ 1

r

∂ ūr

∂ϕ

)]
.

Here, (r , ϕ) denotes the position of active particle in the flow field. Hence, we
obtained a deterministic model that controls the behaviour of particle motion in the
flow field. The terms on the right-hand side of (2.26) represent the deterministic
rate of change with respect to r , ϕ and θ . Based on our estimates, choosing ε =
O(10−2)−O(10−1), δ = O(10−1)−O(1) and ωa = O(105)−O(107)µm s−1 together
with v0 = O(10)−O(100)µm s−1 leads to a wide range of α values (O(10−1)−O(103)).
The presence of curved streamlines in the acoustic streaming flow generates additional
torques on particles, causing them to intricately align with local streamlines and modify
their swimming behaviours. Additionally, the inherent activity of active particles can
significantly influence the selection of their swimming direction.

3. Impact of rotational diffusion

3.1. Discrete description
Using a deterministic model (2.26), we have developed an understanding of the swimming
dynamics of a single particle in the acoustic streaming flow. However, in real biological
environments, many factors, such as random walk behaviour and thermal fluctuations,
can influence the movements and distributions of micro-organisms. Randomness plays
a crucial role in the spatial heterogeneity of micro-organisms. To gain insights into the
effects of random fluctuations, it is necessary to incorporate noise into our deterministic
model. Generally, noise primarily affects the motion behaviours of particles by inducing
random translational and rotational diffusion. For a swimmer with typical size, rotational
diffusion has more significant effects on its movement compared with translational
diffusion (Stark 2016). Here, we consider the rotational diffusion coefficient Dr in our
model to represent the random noise in the particle’s orientation. To characterise the
impact of diffusion on the swimming dynamics of particles, we define the Péclet number as

Pe = v0

Dr a
. (3.1)

We define μr , μϕ and μθ as drift terms, representing the deterministic rates of change
of r , ϕ and θ in (2.26). The Langevin equation for a particle, incorporating the effect of
random rotational diffusion on its orientation, can be written as follows:

dθ
dt

=μθ +
√

2Pe−1ξr (t), (3.2)

where ξr (t) is a random variable that satisfies 〈ξr (t)ξr (t ′)〉 = δr (t − t ′) and δr follows the
von Mises distribution. As a reference, for most micro-organisms, the magnitude of the
diffusivity is approximately O(10−2)−O(10−1) s−1 (Tavaddod et al. 2011; Drescher et al.
2011; Butenko et al. 2012; Koens & Lauga 2014). As previously mentioned, the velocities
of most microorganisms are O(10)−O(100)µm s−1. By setting a ∼ 10 µm, the inverse
Péclet number is O(10−3)–O(10−1).
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3.2. Continuous description
To describe the statistical characteristics of the particles in the acoustic streaming flow,
we introduce the probability distribution function P(r, ϕ, θ, t), which represents the
probability that the particle is located at position (r, ϕ) and moving towards θ at time
t . The probability distribution function is non-negative everywhere and its total integral
is normalised to 1. Here, P can be obtained by the Langevin equation (3.2). We define
an independent Wiener process W , satisfying dW = ξr (t)dt , where the increment dW has
zero mean and variance dt . Therefore, (3.2) can be rewritten as a stochastic differential
equation (SDE),

dθ =μθdt +
√

2Pe−1dW, (3.3)

where increment dW satisfies

〈dW 〉 = 0, (dW )2 = dt. (3.4)

Then, we can obtain the multidimensional Itô formula from the stochastic differential
equation (3.3). This formula can be used to transform the stochastic process into
an evolution process of probability density. We therefore derive the corresponding
Smoluchowski equation as follows:

∂P

∂t
= − ∂

∂r
(μr P)− ∂

∂ϕ

(
μϕP

)− ∂

∂θ
(μθ P)+ Pe−1 ∂

2 P

∂θ2 , (3.5)

where

μr = cos(θ − ϕ)+ αūr ,

μϕ = 1
r

sin(θ − ϕ)+ αūϕ
r
,

μθ = α

2r

(
∂(r ūϕ)

∂r
− ∂ ūr

∂ϕ

)
+ αγ

2

[
sin (2(θ − ϕ))

(
−∂ ūr

∂r
+ 1

r

∂ ūϕ
∂ϕ

+ ūr

r

)
(3.6)

+ cos(2(θ − ϕ))

(
r
∂

∂r

(
ūϕ
r

)
+ 1

r

∂ ūr

∂ϕ

)]
.

4. Results

4.1. Motion of a single particle
We investigate the swimming dynamics of both passive and active particles under identical
initial conditions in the acoustic streaming flow. For the numerical results, we solve (2.26)
using a fourth-order Runge–Kutta method, as employed in the study by Arguedas-Leiva
& Wilczek (2020), ensuring a sufficiently small time interval to maintain stability and
accuracy. The particles are initially positioned at r0 = 3, ϕ0 = π/5, with an orientation
angle of θ0 = 5π/4. Upon exposure to the streaming flow, these particles tend to align with
the streamlines. Over time, their positions and orientations exhibit periodic variations,
indicating that they are trapped in stable bounded orbits. Figure 3(a) demonstrates the
stable bounded orbits for a spherical particle (γ = 0) at different flow strengths α. We
observe that the passive particle moves along the streamline passing through its initial
position, whereas the stable bounded orbit of the active particle is closer to the vortex
centre and has a smaller range compared with that of a passive particle. In this context, the
range of a stable bounded orbit refers to the extent of variation in both the radial and polar
directions of the orbit, describing its spatial coverage. This difference of orbit indicates
that the inherent activity of active particles enables them to cross streamlines to enter the
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Figure 3. Stable bound orbits of passive and active particles: (a) spherical (γ = 0); (b) elongated (γ = 1). We
consider different flow strengths, α = 10, 20, 100 in different colours. The initial position of each particle is
(r0, ϕ0)= (3, π/5) (black circular and elliptical point) and the initial orientation angle is θ0 = 5π/4 (black
arrows). The magnitude of the scaled streamfunction is |ψ |/αa2.

region near the vortex centre, leading to a reduction in the range of their stable bounded
orbits.

Additionally, we observe that the stable bounded orbit of an active particle depends
on the flow strength α. When α = 10, the active particle crosses the streamlines and is
trapped in the region near the vortex centre. As α increases to 20, the stable bounded
orbit becomes closer to the vortex centre compared with the case of α = 10. However, for
α= 100, the range of stable bounded orbits for the active particles increases compared
with the case of α = 20. In this context, the acoustic streaming flow dominates the
behaviour of the active particle. As the particle moves into regions far from the oscillating
bubble, the cross-flow velocity of the streaming flow aligns it with the streamlines,
reducing its ability to enter the interior of the vortex, and ultimately trapping it in the
stable bounded orbit farther from the vortex centre.

In figure 3(b), we demonstrate the stable bounded orbits of elongated particles (γ = 1)
under the same initial conditions. We find that in both spherical and elongated cases,
passive particles move along the streamlines. Elongated active particles are also trapped
in the stable bounded orbits near the vortex centre similar to the spherical cases. However,
at the given flow strength α and initial conditions, the range of the stable bounded orbit of
an elongated active particle is systematically smaller than that of a spherical particle. This
could be due to the fact that elongated particles are more easily able to cross streamlines.
According to Jeffery’s orbit (Jeffery 1922), elongated particles exhibit more significant
and complex rotational behaviours compared with spherical particles. Specifically, when
elongated particles are in motion, their rotations tend to follow Jeffery’s orbit, which
results in greater alignment with the flow direction and facilitates their ability to move
across streamlines. Therefore, it is reasonable to expect that elongated particles, when they
have velocity, will have a greater tendency to cross streamlines, leading to a smaller overall
motion range. However, we hypothesise that elongated particles may migrate towards
regions with higher shear rates, particularly near the vortex centre. This is similar to the
findings of Nitsche & Hinch (1997), who reported that elongated particles in shear flows
migrate towards regions with higher shear rates, such as near the wall. However, due to the
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Figure 4. Dependence of the stable motion range of active particle on the flow strength α. Motion ranges
are measured by (a) �r along the radial direction and (b) �ϕ along the polar direction. These ranges are
normalised by the �r0 and �ϕ0, which represents the motion range of the passive particle along the radial and
polar direction, respectively. We consider the spherical (γ = 0) and elongated (γ = 1) active particles under
two different initial condition: IC1 (r0 = 3, ϕ0 = π/5, θ0 = 5π/4) and IC2 (r0 = 4, ϕ0 = π/4, θ0 = π/4).

complexity of the flow field in our study, the exact cause of this migration cannot be fully
confirmed.

The stable bounded orbit of an active particle depends on the flow strength α and the
shape parameter γ , indicating that the interaction between the background flow field
and the particle can significantly influence the particle’s range of motion. We further
investigate the dependence of the stable motion ranges of both spherical and elongated
active particles on flow strength α. We use �r and �ϕ to represent the motion range of
particles along the radial and polar directions, respectively, when the dynamics reach a
steady state. Specifically, once the motion reaches a steady periodic state, we extract the
maximum and minimum values of r and ϕ during the periodic motion and calculate their
differences to obtain �r and �ϕ. These ranges are then normalised by the corresponding
values for passive particles, denoted by �r0 and �ϕ0. To ensure consistency across
all cases, we use identical initial conditions, which eliminates the influence of initial
conditions on the results. In figure 4, we present the stable motion ranges �r and �ϕ
of spherical (γ = 0) and elongated (γ = 1) active particles under different flow strengths
α. We consider two initial conditions: the first case (r0, ϕ0, θ0)= (3, π/5, 5π/4) (IC1)
and the second case (r0, ϕ0, θ0)= (4, π/4, π/4) (IC2). We note that although we present
results for two different initial conditions (IC1 and IC2), the ratio of motion ranges between
active and passive particles remains qualitatively similar in both cases, indicating that the
observed trends are not sensitive to the initial conditions. We observe that as the flow
strength α increases, the motion ranges �r and �ϕ of the particles initially decrease for
all cases. When the flow strength α reaches a critical value of 30, the motion ranges �r
and�ϕ of active particles are minimised. As the flow strength α continues to increase, the
stable motion range of the active particle increases until it converges to 1.

This non-monotonic behaviour arises from the interaction between the intrinsic activity
of the active particles and the external acoustic streaming flow. At low flow strengths, the
particle’s intrinsic velocity dominates its motion and its orientation is random, leading
to a relatively broad motion range. At very high flow strengths, the particle’s intrinsic
velocity becomes much smaller than the flow velocity, causing its behaviour to closely
resemble that of a passive particle. In this regime, the particle’s motion is restricted to
follow the streamlines, with its behaviour determined by its initial conditions. However,
when the velocity scales of the particle and the flow become comparable, the particle
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Figure 5. Stable distribution of trapped passive and active particles represented by orange points. We consider
different flow strength α = 10, α = 20, α = 100. The corresponding parameters are Pe−1 = 0.01 and γ = 1.
The magnitude of the scaled streamfunction is |ψ |/αa2.

exhibits more intricate dynamics, such as crossing streamlines and remaining confined
nearer to the vortex centre. Consequently, the motion range is relatively large at both low
and high flow strengths, resulting in the observed non-monotonic dependence of motion
range on flow strength.

Additionally, we find that the stable motion range �r and �ϕ for active particles is
nearly identical under different initial conditions. This indicates that the initial position and
orientation of the particle have little effect on its motion range. Moreover, under the given
flow strength α and initial conditions, the stable motion range of an elongated particle is
smaller than that of spherical particle. This further indicates that the elongated geometry
of the particle enhances its ability to cross streamlines and enter the region near the vortex
centre. Therefore, we demonstrate that the interaction between the flow field and active
particles has a crucial impact on the stable bounded orbits and motion ranges of active
particles.

4.2. Dependence of trapping on the flow strength
We investigate the trapping of passive and active particles by the acoustic streaming flow
in the presence of rotational diffusion. In the deterministic model, the stable bounded
orbits of spherical and elongated particles are qualitatively similar. Therefore, we primarily
focus on the case of an elongated particle in the following analysis. We initialise 1500
particles uniformly distributed within the region 1 � r � 10 and 0 � ϕ � π/2, with their
initial orientation angle set randomly within the range (0, 2π). Under the influence of
the acoustic streaming flow, the particles exhibit two possible behaviours: escaping from
the flow field or being trapped within the streaming flow field. Particles are considered
to be trapped when their motion stabilises into a bounded orbit within the computational
domain, indicating confinement by the streaming flow. However, particles are considered
to escape when they cross the boundaries r = 1, r = 10, ϕ = 0 and ϕ = π/2. To account
for this, we apply the absorbing boundary conditions to remove particles that reach the
boundaries r = 1, r = 10, ϕ = 0 and ϕ = π/2. We numerically solve (3.2) by using the
Euler–Maruyama method to calculate the trajectories until the particles either escape or
their motion ranges stabilise. Thus, we can obtain the stable distribution positions of the
trapped particles under different flow strengths.

Figure 5 illustrates the stable distribution of the trapped passive and active particles in
the acoustic streaming flow. The orange points shown in figure 5 correspond to the instan-
taneous positions of individual particles after the system has reached a statistically steady
state, providing a discrete visualisation that complements the continuum probability densi-
ty functions. We observe that passive particles are distributed dispersedly within the region
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Figure 6. Dependence of trapping rate Ntrap/N of active elongated particles (γ = 1) on the flow strength.
Ntrap is the number of trapped particles, while N is the total number of particles initially located in the
streaming flow.

of closed streamlines. In contrast, active particles exhibit a tendency to aggregate in spe-
cific regions of the flow field, with their stable distribution area being significantly smaller
than that of passive particles. When α = 10, the distribution region of the particles is rela-
tively confined, with active particles aggregating in regions far from the oscillating bubble.
When α= 20, active particles are primarily distributed in the region near the vortex centre.
As the flow strength α increases further, reaching α = 100, the distribution region expands
and becomes more dispersed compared with the case at α= 20. These observations
indicate that the stable distribution region of active particles depends on the flow strength.

Then, we define the trapping rate as the proportion of active particles that remain
confined within the computational domain after their motion stabilises in a steady state.
To calculate this, the positions of all particles are tracked throughout the simulation, and
those that remain within the domain are identified. The trapping rate is then determined
as the ratio of the number of confined particles, Ntrap, to the total number of particles
initially introduced into the computational domain, N . In figure 6, we present the trapping
rate of active particles under different flow strengths. We observe that the trapping rate
of active particles initially increases with the flow strength α, as the particle’s intrinsic
activity allows for stable confinement within the vortex region. When α reaches a critical
value of 30, the number of trapped active particles reaches its maximum, with the majority
of active particles being confined within the acoustic streaming flow field. When the
flow strength α exceeds the critical value and continues to increase, the number of
active particles trapped in the acoustic streaming flow gradually decreases. As previously
mentioned in figure 4, at low flow strength α, the intrinsic activity of particle dominates
its motion, leading to a larger motion range, which increases the likelihood of particles
escaping under the influence of rotational diffusion, resulting in a lower trapping rate.
As α increases to intermediate values, the flow strength becomes comparable to particle
activity, reducing their motion range and confining them closer to the vortex centre. This
confinement minimises escape probabilities and maximises the trapping rate. However, at
high flow strengths α, the flow field dominates the particle’s behaviour and the motion
range increases again, particularly near the vortex boundary. The increased motion range,
combined with rotational diffusion, results in a higher probability of escape, causing the
trapping rate to decline.

4.3. Distribution of the trapped particles
We further investigate the distribution of trapped passive and active particles under
different flow strengths. On the one hand, following the same approach as previously
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described, we initialise 1500 particles uniformly distributed within the region 1 � r � 10
and 0 � ϕ � π/2, with their initial orientation angle θ set randomly within the range
(0, 2π ). The boundaries of this calculation region, defined by r = 1, r = 10, ϕ = 0 and
ϕ = π/2, are set as absorbing to remove particles that reach the boundaries. Then,
we calculate the distribution positions of all trapped particles by solving the Langevin
equation until the particle distributions converge over time, indicating that a steady state
has been reached. Subsequently, the calculation domain is divided into a uniform grid of
200 cells in the r direction and 100 cells in the ϕ direction. We determine the number of
particles in each grid cell and normalise these counts by the total number of particles. By
averaging the normalised counts over the angular direction for each radial segment and
over the radial direction for each angular segment, we can obtain stable radial distribution
function (RDF) and angular distribution function (ADF) of particles.

On the other hand, we numerically solve the Smoluchowski equation (3.5) by
employing the Crank–Nicolson method. This computation is performed within the region
defined by 1 � r � 10, 0 � ϕ � π/2 and 0 � θ � 2π . The initial probability distribution
function P within the calculation region has a uniform distribution that satisfies the
normalisation condition. To maintain consistency with the boundary conditions employed
in the Langevin equation, we impose absorbing boundary conditions with P = 0 at
the boundaries r = 1, r = 10, ϕ = 0 and ϕ = π/2. Additionally, a periodic condition is
imposed to θ . The numerical solution is carried out on a mesh grid of dimensions
200 × 100 × 400, providing sufficient resolution to capture the distribution’s dynamics.
The solution is iteratively computed until a steady-state probability distribution function
Ps is obtained, with convergence monitored throughout the process to ensure accuracy.
Therefore, the stable RDF and ADF of particles can be calculated by

RDF(r)=
∫∫

Ps dϕdθ, ADF(ϕ)=
∫∫

Psr drdθ. (4.1)

Figure 7 demonstrates the stable distribution of the trapped passive and active particles
at α = 60, Pe−1 = 0.01 and γ = 1. Additionally, in figures 7(b,c) and 7(e, f ), we compare
the stable RDF and ADF of these particles obtained from the Langevin model (3.2)
and the Smoluchowski equation (3.5). The consistency between the results from both
models confirms the accuracy and effectiveness of our approach. Figure 7(a–c) shows
that the distribution of passive particles is relatively uniform in the radial direction, with
particles primarily distributed in regions of closed streamlines in the angular direction.
Passive particles initially located on unclosed streamlines escape from the flow field due
to the incoming flow, whereas only particles located on the closed streamlines can remain
confined within the flow field and continue moving along streamlines because of their
lack of activity. Thus, passive particles are uniformly distributed in the region composed
of closed streamlines. However, in figure 7(d– f ), active particles exhibit a significant
concentration in the central region of the vortex, leading to a non-uniform distribution in
both the radial and angular direction. Unlike passive particles, active particles can cross the
streamlines laterally and enter the region near the vortex centre, regardless of whether their
initial positions are on the enclosed streamlines. Therefore, active particles located within
the acoustic streaming flow region can be trapped and collected in the smaller region
near the vortex centre compared with that of passive particles, resulting in a non-uniform
distribution.

To further elucidate the dependence of the stable distribution of active particles on
the flow strength α, we calculate the radial distribution function and angular distribution
function of active particles under different flow strengths within the range (1<α < 100).
In figure 8, we demonstrate the typical results for α= 5, 10, 30, 50 and 100. We observe
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parameters are α = 60, Pe−1 = 0.01 and γ = 1.

0.04

0.08

0.12

0.16

0 0.80.4 1.61.20 42 86 10

0.02

0.04

0.06

0.08

(a) (b)

r

R
D

F
 (

r)

α = 5
α = 10
α = 30
α = 50
α = 100

A
D

F
 (
ϕ

)

ϕ

Figure 8. Stable (a) RDF and (b) ADF of active particles. We consider different flow strength
α = 5, 10, 30, 50, 100 in different colours. Other corresponding parameters are γ = 1, Pe−1 = 0.01.

that, at α = 5, active particles concentrate in the region further away from the vortex
centre in the radial direction. However, as the flow strength α continues to increase, the
concentration position of active particles in the radial direction is closer to the vortex
centre and the particles become more concentrated compared with the case of α= 5.
When the flow strength reaches a critical value of α= 30, almost all trapped active
particles are collected in the vortex centre of the acoustic streaming flow field, where
the degree of accumulation reaches its maximum in both radial and angular directions.
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Figure 9. Stable (a) RDF and (b) ADF of active particles at γ = 1 and α = 25. We consider different Péclet
number, Pe−1 = 0, 0.01, 0.02, 0.05.

Thus, for α � 30, increasing the flow strength α enhances the accumulation degree
of active particles. However, when α continues to increase, as in the cases of α =
50, 100, the accumulation degree of active particles decreases in both radial and angular
directions. The accumulation behaviour of active particles strongly depends on individual
particle dynamics. At very low or high flow strengths, the particle’s motion range is
large, leading to weak accumulation. When the flow is comparable to the particle’s
velocity, the motion range of particle becomes smaller, causing a more pronounced
accumulation. Consequently, accumulation behaviour of active particles shows a non-
monotonic dependence on flow strength. Our results show that the interaction between
the acoustic streaming flow and particle activity dominates the distribution position and
accumulation degree of active particles.

4.4. Effect of noise on the distribution of particles
Generally, rotational diffusion significantly affects the distribution of active particles.
Thus, we calculate the radial distribution function and angular distribution function of
active particles under Pe−1 = 0, 0.01, 0.02 and 0.05. Figure 9 demonstrates the obtained
results. We can observe that as Pe−1 increases, the aggregation degree of active particles
in both radial and angular directions decreases. In other words, an increase in rotational
diffusion leads to a more dispersed distribution of active particles under a given flow
strength α. This is because the enhanced rotational diffusion increases the randomness of
their orientation, reducing the influence of the flow field on their directional movement.
As a result, active particles are more likely to diffuse throughout the streaming flow field
rather than being concentrated in specific regions, leading to a more dispersed overall
distribution.

5. Concluding remarks
We investigate the swimming dynamics of both passive and active particles within the
acoustic streaming flow generated by an oscillating bubble. Through the establishment
of a deterministic model, we demonstrate the existence of stable bounded orbits for both
passive and active particles in the absence of noise. Our findings indicate that a passive
particle can only move along the streamline passing through its initial position, while an
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active particle has the ability to cross streamlines and become trapped in stable bounded
orbits closer the vortex centre compared with that of a passive particle. Then, we define
the flow strength α, which is the radio of characteristic flow strength of acoustic streaming
flow to the intrinsic swimming speed of particles. We find that the flow strength dominates
the stable bounded orbit of the active particle. Therefore, we further investigate the effect
of flow strength α on the stable motion range of active particles. We observe that as the
flow strength increases, the stable motion range of an active particle initially decreases.
However, after exceeding a critical flow strength, the range of particle motion gradually
increases with α until it becomes identical to that of a passive particle. This is attributed to
the interaction between particle activity and the flow field. Furthermore, we demonstrate
that the features of both the stable bounded orbits and the trends in their stable motion
range variation with flow strength remain consistent for the spherical and slender shape
particles.

We further introduce rotational noise to examine how the trapping and distribution
of passive and active particles are influenced by flow strength, using the Langevin and
Smoluchowski equations. We find that the distribution range and trapping rate of the active
particles initially increases and then decreases with increasing flow strength α, which is
consistent with the observations of a single particle. However, active particles exhibit a
significant concentration in the central region of the vortex, leading to a non-uniform
distribution in both the radial and angular direction. This phenomenon provides insight
into the observed accumulation of Escherichia coli in the acoustic streaming flow field
(Yazdi & Ardekani 2012). Additionally, as the flow strength increases, the concentration
region of the active particle is closer to the vortex centre, while the accumulation degree
of active particles initially increase and then decreases. Additionally, we identify a flow
strength that maximises the accumulation degree of active particles within the acoustic
streaming flow. The particle accumulation strongly depends on the motion range of
individual particle, resulting in the non-monotonic dependence on the flow strength,
which represents a key insight from our study. This result has practical implications for
microfluidic systems, suggesting that flow strength can serve as a control parameter to
modulate particle behaviour for targeted aggregation or dispersion.

We remark several limitations of the current study and explore potential avenues
for future research. First, in our study, we assume both the motion of particles and
the streaming flow field to be two-dimensional. This simplification facilitates a more
straightforward investigation of particle dynamics in the acoustic streaming flow. However,
allowing particles to move in the third dimension can potentially reveal new behaviours
not observed in the two-dimensional case. The emergence of complex vortex structures in
three-dimensional acoustic flows may lead to altered particle aggregation characteristics
and the appearance of scattering behaviour (Ahmed et al. 2016). Second, our study
considers the flow field and particle motion to be unbounded, whereas real-world
microfluidic environments are typically bounded. In typical microfluidic conditions,
an oscillating microbubble is ususlly trapped within microfluidic chips, introducing
additional boundary conditions such as wall-induced hydrodynamic interactions. These
effects may alter the flow field and particle dynamics (Dey et al. 2022), which are not
accounted for in our current model. Incorporating reflective or other boundary conditions
with bounded flow fields will provide a more comprehensive understanding of particle
dynamics in acoustic streaming flows, which is essential for translating theoretical findings
into practical applications in microfluidic devices. Third, our analysis is based on an
asymptotic solution of the acoustic streaming flow, which requires ε� δ� 1. While
this approximation provides a tractable way to capture the essential vortex structure and
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define a meaningful flow strength scale, it may not perfectly represent real experimental
conditions, especially as ε and δ approach O(10−1) and O(1), respectively. In such
regimes, higher-order effects, boundary conditions or other complexities may become
significant, and more detailed numerical simulations or direct experimental measurements
would be required to accurately quantify the flow field and particle dynamics. Finally,
we have focused on the motion of non-gyrotactic particles but neglecting inertial effects.
Future research can explore the role of inertia and gyrotaxis, especially in micro-organisms
like algae, to better understand particle behaviour in acoustic streaming flows and its
implications for biological and fluid systems.

Our study provides valuable insights into the hydrodynamic mechanisms underlying the
swimming and aggregation behaviours of active particles within acoustic streaming flow
fields. These findings extend beyond basic research and have broader implications across
various fields. For instance, the focusing mechanisms of particles under varying flow
strengths, as demonstrated in our study, offer indirect evidence supporting the existence
of microbial heterogeneity within the human body’s environment (Weiss et al. 2023;
She et al. 2024), highlighting the intricate interdependence between micro-organisms
and their non-biological surroundings, particularly in biofilm formation. Moreover, the
aggregation behaviour of active particles in acoustic streaming flows can be harnessed for
practical applications such as developing disposable and portable microfluidic devices for
rapid microbial detection (Rossi et al. 2023). By optimising flow strength, these devices
can collect micro-organisms more quickly to detectable levels, significantly advancing
diagnostic technology. In environmental monitoring, similar mechanisms can be applied
to efficiently detect pollutant particles in water and air, improving the speed and accuracy
of pollution detection. Furthermore, the control of cell aggregation in tissue engineering
and the development of high-precision laboratory equipment in microfluidics and acoustic
manipulation can benefit from our insights, paving the way for innovations in areas like
single-cell analysis and particle sorting.
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Appendix A. Coefficients and flow characteristics
In the section of sketching the asymptotic solution, the relevant complex con-
stants, C1,C2, D1, D2, E2, a0, a1, a2, b0, b1, b2, c1, c2, d1, d2, G00,G01,G11,G12,
H00, H01, H11, H12, are given as follows:

C1 = 3
√

2
4
(1 + i)V̄0V1, C21 =

(
39
2

− 24
√

2
)

V̄0V1, C22 = −6(1 + i)V̄0V1,

D1 = 3
√

2
4
(1 + i)V̄1V1, D21 =

(
−30 + 36

√
2
)

V̄1V1, D22 = −9(1 + i)V̄1V1,

E2 = 3i V̄1V1, a0 = V0V̄1i + 3i

2
V̄0V1, a1 = −3

√
2

2
(1 + i)V̄0V1, (A1)
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Figure 10. Steady acoustic streaming flow generated by the oscillating bubble for V0 = 0.4, V1 = 1. The
magnitude of the scaled stream function is |ψ |/(ε2δωa3). The red line ψ = 0 represents the separatrix, which
separates the closed-streamline regions from the open-streamline regions.

a2 = 39V̄0V1, b0 = 27i

40
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+
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√
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]
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√
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8
V̄1V1, T31 = 27

40
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V̄1V1, T41 = −27

40
V̄1V1. (A2)

In addition, we present the steady acoustic streaming flow with V0 = 0.4 and V1 = 1,
which are used in our study for particle dynamics in figure 10. The separatrix (ψ = 0) is
shown as the boundary between the closed and open streamline regions.

Appendix B. Dependency of steady orbits on initial conditions
In this appendix, we include the full time evolution of trajectories for various initial
conditions in the (r, ϕ) space, including conditions IC1 and IC2 explicitly mentioned in
the text, at α= 20. As shown in figure 11, the results illustrate the transient dynamics of
the active particles, showing how their positions evolve over time before reaching a steady
state. We observe that under different initial conditions, the trajectories of active particles
undergo varying evolutions. However, the trajectories of captured particles ultimately
converge to similar stable bound orbits, which demonstrates the stability of the particle’s
bounded trajectories. For certain initial conditions in figure 11(d), particles may either
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Figure 11. Time evolution results of the radial r and angular position ϕ of active particles with
different initial conditions: (a) IC1 (r0 = 3, ϕ0 = π/5, θ0 = 5π/4) and IC2 (r0 = 4, ϕ0 = π/4, θ0 = π/4);
(b) r0 = 3, 3.1, 3.5, ϕ0 = π/6, θ0 = 0; (c) r0 = 3.5, ϕ0 = π/8, π/6, π/3, θ0 = 0; (d) r0 = 3.5, ϕ0 = π/8, θ0 =
0, π/2, 5π/4, 7π/4. The dots represent the initial positions of active particles. Arrows represent their initial
motion directions, given by (ṙ(r0, ϕ0, θ0), ϕ̇(r0, ϕ0, θ0)). The transparent lines represent the detailed time
evolution results, while the solid lines represent their stable orbits. The corresponding parameters are α = 20,
γ = 1.

escape the flow field without being captured or collide with the bubble, which also reveals
the complexity of particle dynamics within the acoustic streaming flow field.
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