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An effective evasion strategy allows prey to survive encounters with predators. Prey are
generally thought to escape in a direction that is either random or serves to maximize the
minimum distance from the predator. Here, we introduce a comprehensive approach
to determine the most likely evasion strategy among multiple hypotheses and the role of
biomechanical constraints on the escape response of prey fish. Through a consideration
of six strategies with sensorimotor noise and previous kinematic measurements, our
analysis shows that zebrafish larvae generally escape in a direction orthogonal to the
predator’s heading. By sensing only the predator’s heading, this orthogonal strategy
maximizes the distance from fast-moving predators, and, when operating within the
biomechanical constraints of the escape response, it provides the best predictions of
prey behavior among all alternatives. This work demonstrates a framework for resolving
the strategic basis of evasion in predator–prey interactions, which could be applied to
a broad diversity of animals.

predator–prey interactions | probabilistic modeling | fish C-start | fluid–structure interactions |
hydrodynamics

The abilities to sense and evade predators are central to the survival of a diversity of
prey species. The timing, speed, and direction of a prey’s escape reflect the animal’s
evasion strategy, which is formulated by its neurophysiology and biomechanics (1).
Despite the fundamental importance of predator encounters, resolving a prey’s strategy is
experimentally challenging due to the variability inherent to animal behavior. Predators
vary in their approach toward prey, and the ability of the prey to respond is filtered
through the environment and the animal’s physiology, which may additionally introduce
noise in sensing, integration, and motor response. The aims of the present study are to
develop an analytical approach that is capable of resolving prey strategy from kinematic
measurements and to use that approach to test classic theory on strategy in fish predator–
prey interactions.

The interactions between an individual predator fish and prey fish offer a classic system
for the study of evasion strategy. Fish evade predators with a stereotypical “C-start”
response, characterized by the fish body bending into a preparatory C-shape, followed
by a rapid acceleration as the body unfolds with largely planar motion (2). Fish escape
behavior inspired an application of differential game theory to determine the optimal
strategy of prey (3). The distance-optimal strategy is the solution to the “homicidal
chauffeur” game where prey move in the direction that maximizes the closest distance
achieved by a predator that maintains a constant velocity (4). The distance-optimal
strategy has been invoked to explain the escape responses in animals as divergent as
cockroaches (5), crickets (6), shrimp (7), frogs (8), salamanders (9), crabs (10), and
a variety of fish species (11, 12). This strategy is generally considered the primary
alternative to escaping in a random direction, known as the protean strategy, which
offers the tactical benefit of confusing the predator (13–16). The present study considers
whether previously measured escape kinematics in zebrafish larvae (17, 18) are consistent
with distance-optimal, pure-protean, or alternative strategies.

The zebrafish (Danio rerio) larva is a compelling system for investigating evasion
because it has served as a model for the neurophysiology and biomechanics of the
C-start. Its small size, lack of pigmentation, and amenability to genetic manipulation
have facilitated applications of functional imaging and optogenetics in zebrafish to observe
and manipulate the sensory and motor circuits responsible for visually mediated escapes
(19–21). A combination of high-speed kinematics, flow visualization, and computational
fluid dynamics has revealed a comprehensive accounting of the fluid forces that propel
the escape response of zebrafish larvae (22–26). We incorporate these findings into a
consideration of the biomechanical constraints on the escape strategy.

We adopt a multipronged approach for testing the evasion strategy in larval zebrafish.
Using a strong-inference technique (27), we mathematically define models for six
strategies, both with and without sensorimotor noise (Fig. 1). We then proceed to
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Fig. 1. Evasion strategies. (A) Schematic shows the predator position (d,�) and heading  in the prey’s frame of reference. (B) Change � in the prey heading
direction at evasion as predicted by five evasion strategies—distance-optimal: prey makes a turn that maximizes the shortest distance from the predator;
orthogonal: prey turns to the direction orthogonal to the predator heading in order to flee the path of the predator; parallel: prey turns to align with the
predator heading direction; antipodal: prey turns in the opposite direction of the predator angular position; and contralateral: prey turns left or right by 90◦
depending on the predator angular position. Strategies are distinguished by color.

evaluate these model predictions against previous measurements
of escape kinematics (17) to determine the strategy that most
likely describes those observations. Finally, a consideration of the
escape hydrodynamics and fluid–structure interactions allows us
to evaluate the constraints on these strategies. These measures
combine to offer a general framework for evaluating evasion
strategies in predator–prey encounters.

Results

Our description of the major results is organized around four
main themes: 1) experimental data of the evasion kinematics of
larval zebrafish and their descriptive statistics, 2) mathematical
definitions of the evasion strategies, 3) formulation of the
analytical approach and testing of evasion strategies, with and
without sensorimotor noise, and 4) evaluation of the effects of
biomechanical constraints on evasion.

Experimental Measurements of Escape Kinematics. We ana-
lyzed anew a large experimental dataset for the kinematics
of escape responses in zebrafish larvae that were previously
published (17, 18). Larvae were exposed to a robotic predator,
consisting of a dead adult zebrafish (of fixed size) controlled with
a motor to move through an aquarium of otherwise still water. As
detailed previously (17, 18), larvae were largely motionless prior
to the escape response that was stimulated by the presentation
of the predator. The recorded responses of larvae were compiled
from numerous experiments, each of which elicited a modest
number of responses. Larvae were excluded from the analysis if
they responded within a few body lengths from, or a few seconds
after, another responding larva. The 3D kinematics of larvae were
compiled in the predator’s frame of reference to yield a cloud of
responses anterior to the robotic predator.

The speed of the robotic predator was set to a constant equal to
2, 11, or 20 cm s−1 to reflect the speed range of a typical foraging
predator (22). This ensured a repeatable stimulus that elicited
a fast C-start response from the larvae (17, 18). High-speed
kinematics recorded a total of 699 evasion instances:Nslow = 251
for the slow-moving predator, Nmid = 233 for the mid-speed
predator, and Nfast = 215 for the fast-moving predator (Fig. 2).
Experimental analysis. From the previous kinematic measure-
ments, we presently calculated the predator distance d , angular
position φ ∈ [0, 2π), and heading ψ ∈ [−π ,π) in the
prey’s frame of reference at the onset of the C-start escape
response, and we calculated the change in the prey’s orientation
θ ∈ [−π ,π) as it completed the C-start escape response (Fig. 1A

and SI Appendix, Fig. S1B). In our analysis, θ captures the
rotation of the entire fish body, that is, the change in prey
heading, which is not the same as the change in the body angular
position employed previously (17, 18). We clearly distinguish
between the prey’s sensing of the predator angular position φ
and heading ψ , which are often confused in empirical studies of
evasion (12, 28, 29). In addition to the predator’s actual heading
directionψ , we considered that the prey perceivesλ, the deviation
of the predator’s heading from the angular position φ, given by
λ = ψ − (φ + π), λ ∈ [−π ,π) (Fig. 1A and SI Appendix,
Fig. S1 B and C). The predatory stimulus is said to be sinistral
if λ > 0; that is, the predator is headed to the left of where it
appears in the prey’s visual field, and dextral otherwise.
Descriptive statistics of kinematic measurements. We found no
correlation between the prey’s escape direction θ and its distance
d from the predator at the onset of evasion (SI Appendix, Fig.
S3). However, we did find a clear correlation between the escape
direction θ and the angular position φ in instances where the
predator appears in the prey’s visual field (SI Appendix, Fig.
S5). The data also showed a correlation between θ and the
predator heading ψ , when partitioned based on whether the
predator’s heading is sinistral (λ > 0) or dextral (λ < 0), relative
to its angular position φ (SI Appendix, Fig. S7). Importantly,
although the distributions of φ, ψ , and θ varied with predator
speed V , the correlations between θ and φ and between θ and
ψ were qualitatively similar for all V (SI Appendix, Figs. S5
and S7), suggesting that for the range of speeds considered, V
can be treated as a model parameter, rather than a variable that
fundamentally changed the evasion behavior.

In sum, our statistical analysis (SI Appendix, Figs. S2-S7 and
Table S1) indicates that the escape direction θ depends on the
prey’s sensing of the predator’s angular position φ, heading ψ ,
and deviation between them λ, but does not disambiguate which
stimuli determine the escape direction and the behavioral rules
that best explain the data.

Definition of Evasion Strategies. We next define the six fish eva-
sion strategies: distance-optimal, orthogonal, parallel, antipodal,
contralateral, and pure-protean. We index these strategies with
an integer n = 1, . . . , 6 in the order listed above. In all strategies,
we ignore the prey biomechanics and treat both the predator
and prey as point masses equipped with heading directions.
Therefore, the prey’s strategy is demonstrated by the direction
of its escape θ . However, these escape directions vary among the
strategies depending on the relative position and heading of the
predator (Fig. 1B). We rate the strategies by their complexity
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Fig. 2. Experimental measurements of zebrafish larvae evasion in response to the robotic predator, from a dorsal perspective. Zebrafish larvae were randomly
placed in a tank with an approaching robotic predator driven at three speeds: V = 2, 11, and 20 cm·s−1. The larvae were mostly straight and motionless until
exhibiting a fast C-start evasion response to the predator (17, 18). Each experiment involved a single predator–prey encounter. The experiment was repeated
to collect three large datasets of size Nslow = 251, Nmid = 233, Nfast = 215 for the slow, mid-speed, and fast-moving predator, respectively. Evasion instances are
superimposed for visualization purposes. For each evasion instance, we calculated, in the predator frame of reference, the position and orientation of the prey
at the onset of evasion (gray macebells where the head represents the prey’s position and spike represents its orientation). The change in prey’s orientation �
induced by the C-start evasion response (Inset) is shown in colored macebells. Color is used only for illustration purposes and not to be confused with the color
code used in Figs. 1, 3, 4, and 6 to distinguish between evasion strategies.

of sensing (Table 1), which is a relative measure that increases
with the number of geometric parameters that must be accurately
determined to execute the escape in the direction predicted by
the strategy. By this metric, the sensing of absolute quantities is
more complex than relative quantities.
Distance-optimal evasion strategy. A distance-optimal evasion
strategy considers that the prey’s objective, once it detects the
predator, is to maximize its minimum future distance from
the predator (3, 30). Accordingly, the prey should head in
the direction θ relative to its preevasion heading (SI Appendix,
section 2),

θ = f (1)(ψ , λ;χ) =
[
ψ − χ , sinistral: λ ∈ [0,π),
ψ + χ , dextral: λ ∈ (−π , 0),

[1]

where χ = cos−1(U/V ) is an angle that depends on the ratio
U/V of prey speed U to predator speed V . For U > V , χ = 0.
We treat χ as a model parameter rather than a variable. This
distinction may not be important for the prey, but it is relevant
for our subsequent analysis of this strategy.

Table 1. Sensory requirements of evasion strategies
Predator state

Angular Heading
Position Heading Deviation Speed Complexity

�  � V of sensing

Distance-
optimal

· © ◦ © Most

Orthogonal · © ◦ ·

Parallel · © · ·
y

Antipodal © · · ·

Contralateral ◦ · · · Least

© Absolute value ◦ Relative value · Not needed

Orthogonal evasion strategy. We propose a simpler evasion
strategy where the prey turns 90◦ away from the heading direction
ψ of the predator,

θ = f (2)(ψ , λ) =
[
ψ − π/2, sinistral: λ ∈ [0,π),
ψ + π/2, dextral: λ ∈ (−π , 0).

[2]

This strategy is equivalent to the distance-optimal strategy in the
fast predator limit U/V → 0 but may determine θ without the
need to sense the predator speed V .
Parallel evasion strategy. For a slow predator U/V ≥ 1, the
optimal strategy is for the prey to reorient itself in the direction
of the predator heading, θ = f (3)(ψ) = ψ , which can be readily
deduced by setting χ = 0 in Eq. 1. The major disadvantage of
this strategy is that it could place the predator in the blind spot
of the prey’s visual field.
Antipodal evasion strategy. Empirical observations (28, 31)
suggest that the prey might follow an antipodal strategy by
reorienting its heading θ in the direction opposite to the angular
position φ, where the predator appears in its visual field, without
any account for the predator heading ψ ,

θ = f (4)(φ) =
[
φ + π , left stimulus: φ ∈ [0,π),
φ − π , right stimulus: φ ∈ (π , 2π).

[3]

Contralateral evasion strategy. A similar but simpler strategy,
called contralateral, was suggested in (17) when the prey is
approached by the predator from either side. Accordingly, the
prey escapes by turning 90◦ either to the “left” or “right” of its
own preevasion heading,

θ = f (5)(φ) =
[
−π/2, left stimulus: φ ∈ [0,π),
π/2, right stimulus: φ ∈ (π , 2π).

[4]
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Pure-protean evasion strategy. The pure-protean strategy sug-
gests that the evasion response θ is random, independent
of the predator state, with a uniform probability of moving
in any particular direction. This strategy is best expressed
in a probabilistic manner, where the probability distribution
is uniform with constant probability density function (PDF)
p(6)(θ) = 1/(2π) of obtaining any change in orientation θ .

Testing Evasion Strategies. We developed a method for evalu-
ating evasion strategies in terms of their ability to explain the
experimental observations (Fig. 2). Although the pure-protean
strategy is not supported by our experimental data (SI Appendix,
Figs. S5-S7), the data exhibit some level of randomness, as
indicated by the variability in the location of the predator at the
onset of evasion, but potentially also due to inherent sensorimotor
noise in the prey’s perception of the predator and its execution
of the evasion response. Our approach accounts for this variation
in evaluating, comparing, and ranking the hypothetical evasion
strategies. To emphasize the generality of our approach, we
express it in terms of a generic stimulus s and response r, without
reference to the specific degrees of freedom that these vectors
encompass. For the zebrafish larvae, r is simply θ , but s varies
depending on the strategy; theoretically, it could encompass all
or any combination of the variables that define the predator state
d , φ, ψ , λ, and V .

To examine how well the probabilistic strategy models fit the
experimental data, we interpreted the latter from a probabilistic
perspective. An experimental dataset generatesN samples (si, ri),
i = 1, . . .N , from a joint PDF, denoted by po(s, r), whose exact
form is unknown. An evasion behavior follows a conditional PDF
po(r|s) = po(s, r)/po(s), which is related to the joint PDF po(s, r)
and the PDF po(s) of stimuli that elicit an escape response via the
law of total probability (32). Unfortunately, po(s, r) and po(s) are
unknown, and only discrete samples of these PDFs are available
from experiments; thus, there is a need for further modeling and
analysis.
Probabilistic models under precise vs. noisy sensing and response.
We distinguish between the actual predator state s and the prey’s

sensing ŝ of the predator state. Similarly, we distinguish between
the actual escape heading r and the prey’s desired escape heading r̂.
If the prey’s sensing and response are precise, we get ŝ = s and
r̂ = r. However, the sensorimotor modalities underlying evasion
are often noisy: The prey may perceive a noisy version ŝ of the
predator’s state s, and its desired response r̂ may be altered by
noisy execution or environmental conditions to yield r.

Each evasion strategy n, save the pure-protean, defines a desired
escape response r̂ given a perceived predatory stimulus ŝ and
can be expressed as a conditional PDF using the Dirac-delta
function p(n)(r̂|ŝ) = δ

(
r̂− f(n)(ŝ)

)
. The joint PDF p(n)(s, r)

formed based on evasion strategy n follows from the law of total
probability

p(n)(s, r) =
∫∫

p(r|r̂)p(n)(r̂|ŝ)p(ŝ|s)po(s)dŝ dr̂. [5]

Here, p(ŝ|s) and p(r|r̂) model the noise in the prey’s sensing
and response. In the case of precise sensing and response, Eq. 5
reduces to

p(n)(s, r) = δ
(
r− f (n)(s)

)
po(s). [6]

In the following, we treat each case separately.
Evaluating evasion strategies under precise sensing and response.
To obtain samples of the evasion response predicted by Eq. 6,
we use as input the distribution of the empirically observed
stimuli si, and we construct a dataset (si, r

(n)
i = f(n)(si))

for each strategy. For each predator speed, we arrive at five
datasets representing theoretical predictions of the prey’s evasion
response according to the distance-optimal, orthogonal, parallel,
antipodal, and contralateral strategies. Bivariate histograms in the
(φ, θ)-plane for each strategy based on the dataset combining all
predator speeds are shown in Fig. 3B. The histograms represent
discrete cross-sections of p(n)(s, r) and can be used to estimate
the joint probability of obtaining a predatory stimulus φi and
prey response θi. Compared to the histogram obtained from

B

C

A

D

Fig. 3. Model predictions in response to experimentally observed predator states. (A) Bivariate histogram of (�, �) from experimental data. Darker color means
a larger fraction of data points in that area of the (�, �) space. (B) Bivariate histogram based on the evasion models (Eqs. 1–4) with no noise; model predictions
�i in response to experimentally observed predator states �i , i , �i , i = 1 . . . , N, where N = 699 is the size of the combined data. (C) Schematic illustration of how
noise in sensing and response is built into the evasion models. (D) Bivariate histogram using realizations from the noisy evasion models, Eq. 5 under optimal
noise levels.
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experiments (Fig. 3A), the contralateral and antipodal strategies
form straight lines because the predicted θ

(n)
i are uniquely

determined by the predator angular position φi, while the other
distributions are spread out due to their dependency on the
predator heading ψi and λi.

To measure the difference between model predictions and
experimental data, we estimated numerically the Kullback–
Leibler (K–L) divergence DKL, which quantifies the entropy
of p(n)(s, r) relative to po(s, r), using the method in (33); SI
Appendix, S5. Results of the K–L divergence are shown in
Fig. 4A for all five strategies applied to the slow, mid-speed,
and fast predator, as well as the combined data. The actual K–L
divergence is always nonnegative; the negative values are due to
the discrete estimation of the PDF. In each of the four datasets,
the distance-optimal and orthogonal strategies yield the lowest
estimates of the K–L divergence, implying that, of all five evasion
strategies, they give the closest predictions of the prey escape
response. The distance-optimal strategy performs slightly better
for the slow and mid-speed predator, while the orthogonal is more
advantageous for the fast predator and when considering all data
combined. The antipodal strategy also gives relatively low K–L
divergence estimates. The parallel and contralateral strategies,
whose K–L divergence estimates are significantly higher than the
other strategies, have the worst fit to experimental data across all
predator speeds.
Modeling noise in sensing and response. We next introduced
sensing and response noise according to Eq. 5. To model sensing
noise, we considered ŝ to be normally distributed around the
actual state of the predator s, with dispersion �S, and to model
response noise, we considered r to be normally distributed around
the desired response r̂, with dispersion �R. Substituting the noise
models p(ŝ|s;�S) and p(r|r̂;�R) into Eq. 5, and recalling that
p(n)(r̂|ŝ) = δ

(
r̂− f(n)(ŝ)

)
, we arrived, for each evasion strategy

n, at a probabilistic model that depends on the noise parameters
� = {�S,�R} (SI Appendix, section 4). Specifically, we used a
von Mises distribution (normal distribution on the circle) for θ ,
φ, and λ with noise parameters σ2, σ8, and σ3; we let the noise
on ψ follow from ψ = φ + λ + π (SI Appendix, section 4).
At zero noise, the von Mises distribution converges to a Dirac-
delta function at the mean value; when the noise level is high,

it approaches a circular uniform distribution with constant PDF
1/(2π) in any escape direction.
Limit of high noise levels. If the response noise σ2 is large, any
evasion direction is predicted with equal probability density
1/(2π), irrespective of the strategy or the sensing noise, that
is, all strategies become essentially equivalent to the pure-protean
strategy. On the other hand, if the response is precise σ2 = 0, but
the noise in sensing the predator’s angular position σ8 is large, all
strategies, except the contralateral, converge to the pure-protean
strategy; the contralateral strategy predicts θ = ±π/2 with equal
probability. If the prey’s response and sensing of the predator
angular position are both precise σ2 = σ8 = 0, but the prey’s
sensing of the predator’s heading is very noisy (σ3 large), the
antipodal and contralateral strategies do not get affected while the
parallel strategy becomes protean. Interestingly, in this case, the
distance-optimal strategy predicts higher probability of evasion
in directions opposite to the predator location spanning a range
of 2χ (SI Appendix, section 4 and Fig. S9). That is, the distance-
optimal strategy becomes a noisy variant of the antipodal strategy.
For χ = π/2, the orthogonal strategy with large noise on λ
converges to the antipodal strategy with uniform noise spanning
a range of π on either φ or θ .
Optimizing noise levels in sensing and response. For each noisy
evasion strategy, we calculated the noise parameters � =
{�S,�R} that maximize the total likelihoodL of the model given
an experimental dataset, or equivalently minimize the negative
log-likelihood function NLL (SI Appendix, section 6)

NLL = − lnL (�|(r|s); n) = −
∑
i

ln p(n)(ri|si;�), [7]

where p(n)(ri|si;�) is the conditional PDF of obtaining a
response ri given stimulus si for strategy n at noise level �. The
optimal noise parameters �∗ are given by

�∗ = arg min
�

NLL. [8]

We solved this optimization problem numerically in the range
σ8, σ3, σ2 ∈ (0,π) (SI Appendix, Fig. S6). In Fig. 3D, we
plot realizations generated from the five probabilistic evasion
models p(n)(s, r;�∗) at the optimal noise values corresponding

A B

Fig. 4. Evaluation of precise and noisy evasion strategies. (A) K–L divergence estimate from precise model predictions to experiment data is computed
separately for each dataset (slow, mid-speed, and fast predator) and for all data combined. The K–L values for the distance-optimal and orthogonal strategies
are the lowest, indicating better fit to data. (B) AIC difference (1AIC = AIC-AICmin), normalized by the respective sample size of each dataset. For each dataset,
we used the bootstrap method to construct 200 distinct datasets (by sampling with repetition) of equal size to the original dataset. We optimized each of 200
sets, evaluated the corresponding AIC, and computed the mean and standard deviation of 1AIC. The orthogonal strategy has the lowest 1AIC, indicating that
it is the most parsimonious strategy and best explains the data.
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to the dataset of all predator speeds combined. Compared to the
deterministic predictions in Fig. 3B, all five distributions appear
closer to the experimental data in Fig. 3A.
Evaluating strategies under optimal noise parameters. To evalu-
ate how well each optimized strategy describes the experimental
data, we applied the Akaike information criterion (AIC) defined
as ref. 35

AIC = 2K − 2 lnL(�∗|(s, r); n), [9]

whereK is the number of model parameters in each strategy. AIC
considers both the goodness of fit represented by the likelihood
function and the complexity of the model: If two models have
the same likelihood to explain the data, the criterion favors the
simpler model. For example, for the antipodal strategy, we have
two noise parameters �S ≡ {σ8} and �R ≡ {σ2}, thus K = 2;
in contrast, for the orthogonal strategy, we have three noise
parameters, �S ≡ {σ8, σ3} and �R ≡ {σ2}, and the orthogonal
strategy is deemed more complex than the antipodal strategy.

We used bootstrapping to probe the accuracy of our evaluation
of the noisy strategies. Starting from each dataset (e.g., that of
the fast predator), we constructed 200 distinct datasets of equal
size to the original dataset (e.g., Nfast) by random sampling with
repetition. We solved the optimization problem 200 times and
obtained 200 values of �∗ per strategy for each dataset. We
calculated the likelihood valueL and evaluated the AIC for all 200
optimal noise values, thus obtaining a distribution of AIC values
for each strategy and predator speed. The mean and standard
deviation of the distributions of AIC values, minus the lowest
mean value, and normalized by the size of the respective dataset
(Fig. 4B) show that strategies with lower mean values of the AIC
better fit the experimental data.

The results based on the AIC evaluation of the probabilistic
strategies in the presence of sensory and response noise are mostly
consistent with the results based on the K–L divergence (Fig. 4A)
for precise sensing and response, but with marked differences.
The orthogonal strategy ranks the highest in every dataset; the
distance-optimal strategy is slightly behind, in second place, in
all but the slow predator dataset where the antipodal strategy
ranks second. The difference between the orthogonal, distance-
optimal, and antipodal strategies is most distinguishable in the
case of the fast predator. The contralateral and parallel strategies
come last in all datasets and are least descriptive of experimental
data.
Further analysis of distance-optimal strategy. While the predator
speed was controlled atV = 2, 11, 20 cm s−1, the zebrafish larvae
were almost identical in all experiments, implying that the speed
ratio U/V varied drastically between evasion instances: For the
fast predator, this ratio is up to 10 times that of the slow predator.
If the prey were to sense and use the speed ratio to implement the
distance-optimal strategy, we would expect the best performance
to appear at different values of χ = cos−1(U/V ), depending
on predator speed. To test this, we evaluated this strategy for the
slow, mid, and fast predator as a function of χ ∈ [0, 90◦] under
both precise and noisy sensing and response (SI Appendix, section
7 and Fig. S14). We found that the K–L divergence decreased asχ
increased and reached a minimum near χ = 75◦ independent of
predator speed. Similarly, the NLL dropped as χ increased until
it reached a minimum at, or close to, χ = 90◦. These results
suggest that, even if following the distance-optimal strategy, the
prey does not rely on real-time and accurate measurements of
the speed ratio U/V but favors the limit of large predator speed
(χ → 90◦), where the distance-optimal strategy converges to the
orthogonal strategy.

The same conclusion can be reached by examining the values of
the optimized noise parameters. In the range 20◦ . χ . 75◦, the
optimizer mostly selects the largest possible value of σ3 = π to
best fit the data. This high level of optimized noise indicates that
λ is not an effective sensory cue in the distance-optimal strategy
and that the prey is unlikely to use this strategy at moderate χ
values (SI Appendix, section7 and Fig. S14).

Evaluating the Biomechanical Constraints on Escape Strategy.
To complete our evaluation of fish evasion strategies, we
considered the biomechanics of the C-start response. In ref. 34,
the motion of a zebrafish larvae undergoing a C-start maneuver
starting from a straight motionless configuration was recorded
using high-speed photography, and the time evolution of each
segment of the fish body from the onset of evasion at time t = 0
to after the completion of the C-start response at t = T = 25
ms was measured. We developed a mathematical model of the
biomechanics of these events and incorporated that model into
our analysis.

We reinterpreted the experimental measurements in the
context of a three-link fish, head, middle, and tail (Fig. 5B),
and we extracted from experimental measurements the fish
orientation β(t) and rotations α1(t) and α2(t) of the head and
tail relative to the middle segment (SI Appendix, sections 8–9).
The time evolution of the zebrafish body during evasion follows
the three archetypal stages of the C-start response: In stage 1, the
fish curls its body to one side, rapidly unfurls its body in stage 2,
and begins its undulatory swimming in stage 3 (Fig. 5 C and D).

A larger number of C-start maneuvers were recorded in ref. 23,
albeit only measuring the maximum degree of body bendingαmax
and the net change in heading θ = β(T )−β(0) induced by the
C-start maneuver (Fig. 5F ). These results show that the change in
heading direction θ correlates strongly with the degree of body
bending (23). In all recorded maneuvers, the change in body
orientation barely reaches 100◦.
Physics-based modeling of the C-start response. To shed light
on the relationship between body deformations and change in
heading θ during evasion, we employed a physics-based model
of a three-link fish in potential flow (36, 37). Experimental
and computational flow analysis had shown that the C-start
maneuver is dominated by unsteady, pressure-based exchange
of momentum between the fish and surrounding fluid, with
negligible contributions from fluid viscosity and shed vortic-
ity (26, 38). The potential flow model captures these unsteady
pressure forces via the added mass effect (SI Appendix, S8). The
fish model is composed of three identical prolate spheroids (of
major and minor axes a and b) such that the head and tail are
free to rotate relative to the middle link (Fig. 5B); as before,
body deformations are described by the angles α1(t), α2(t)
representing the relative head and tail rotations as a function
of time t, and body orientation β(t) is the angle between the
middle section and an inertial direction taken along the direction
of the initially straight fish.

From consideration of momentum balance on the fish-fluid
system, we arrived at an equation governing the rate of change of
body orientation (37, 39, 40) (SI Appendix, section 8)

β̇ = A1(α1,α2)α̇1 + A2(α1,α2)α̇2, [10]

where A1 and A2 are nonlinear functions of body deformations
α1(t),α2(t); A1 and A2 also depend on fish geometry and
fluid and body densities (ρf and ρb). For ρb = ρf , the fish is
neutrally buoyant. When the fluid forces dominate, the fish can
be considered massless, and ρb is set to zero. Body rotations
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A C

B D

E

F

Fig. 5. Biomechanics of fish C-start response. (A) Larval zebrafish bends its body into a C-shape to initiate a fast start. (B) Three-fish model, with �1 and �2
representing the fish body shape and � the overall body orientation relative to the straight preevasion direction. (C) Experimental data of shape changes of
larval zebrafish during evasion taken from ref. 34 and processed to represent body deformations in terms of head and tail rotations �1 , �2 (gray dots) then
fitted by third-order Fourier series (black lines). (D) Experimental data of overall body rotation for the same evasion instance shown in C (gray dots and black
line). Predictions based on the fish model, taking as input the shape changes in C , are shown in blue lines (solid line for massless and dashed line for neutrally
buoyant fish). (E) The sequence of shape changes in C forms a curve C in the shape space (�1 , �2) (black line). The experimental curve C is approximated by
an ellipse (red) of axes A and B along �1 = ±�2 directions. Colormap represents curl2[A1 , A2] of the fish model, which predicts larger turns for curves that
encompass solely positive (orange) or negative (blue) values. (F ) By varying A and calculating B that maximizes the turn, we get a mapping from maximum
bending angle �max =

√
2A to turning angle � for massless and neutrally buoyant fish (blue lines) that form upper and lower bounds on the experimental

dataset of ref. 23. Both numerical and experimental data show that the C-start mechanics limits larval zebrafish to turning angles � . 100◦.

are proportional to the line integral of Eq. 10 over a curve C
describing body deformations in the shape space (α1,α2). For a
closed curveC , this line integral can be rewritten, using the Stokes
theorem, as an area integral over the region of the (α1,α2) space
enclosed by C ,

θ = β(T )− β(0) =
∫ ∫ (

∂A2

∂α1
−
∂A1

∂α2

)
dα1dα2. [11]

The scalar field curl 2([A1, A2]) ≡ ∂A2/∂α1−∂A1/∂α2 is shown
in Fig. 5E as a colormap over the entire shape space (α1,α2).
To maximize the turning angle θ , a straight fish should deform
its body following a closed curve C that encompasses either
nonpositive or nonnegative values of curl2([A1, A2]), i.e., either
blue or orange regions of the shape space. Closed curves in the
orange region lead to turning counterclockwise. By symmetry,
diagonally opposite curves in the blue region lead to turning
clockwise. Theoretically, the simplest curve for turning is a
circle or an ellipse in the shape space of major axis A aligned
with α1 = α2, for which the maximum bending angle is
αmax =

√
2A (Fig. 5E). Corresponding fish shape deformations

and body rotations β(t) are discussed in SI Appendix, (S8-9 and
Figs. S15–S16).
Comparing model predictions to C-start induced turning of the
fish body. We represented the empirical time evolution of shape
deformations (α1(t),α2(t)) (Fig. 5C ) onto the shape space
(Fig. 5E). Interestingly, the curve C (black line) traced by the
actual fish follows closely the elliptic curve (red line) predicted
by the model as best for turning. Moreover, when taking the

empirical values of α1(t) and α2(t) as input to the physics-based
model in Eq. 10, the resulting predictions of β(t) (blue lines in
Fig. 5D) follow closely the empirical values of β(t) (black line),
especially during the first stage of the C-start response, where
vorticity is negligible; note that while the neutrally buoyant model
(dashed blue line) deviates slightly from empirical observations
in stage 2, the massless fish model (solid blue line) performs
remarkably well way into stage 3, indicating that indeed unsteady
pressure forces dominate the C-start maneuver, as previously
predicted (26).

We next considered a family of shape changes following the
elliptic curve in Fig. 5E by varying A such that αmax =

√
2A

varied from 0 to 120◦. This upper limit on αmax corresponds
to a maximum bending angle without causing the head and tail
of the model fish to cross each other and is consistent with the
experimental observations of ref. 23. Using Eq. 11, we computed,
for each αmax, the value of B that optimizes the change in
orientation θ , thus creating a map from αmax to θ . We compare
these model predictions (blue lines) to experimental data (23)
(black dots) in Fig. 5F . As before, we considered massless and
neutrally buoyant fish. The theoretical predictions behave nearly
as upper and lower limits to experimental data. As observed
previously (23), turning in the model fish barely reaches 100◦
even when the three-link fish bends its body to the extreme of
the head and tail touching. This indicates that the biomechanics
of the C-start maneuver imposes an upper limit on achievable
heading directions θ .
Constrained evasion strategies. We next incorporated the phys-
ical constraints on θ imposed by the C-start biomechanics into
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our evasion strategies. To this end, we mapped the response angle
θ
(n)
i predicted by evasion strategy n onto the interval [0, 100◦]

using the quadratic mapping

θ →

[
1−

(
1−

θmax

π

)
|θ |

π

]
θ. [12]

Small turns get less constrained, whereas large turns are limited
to the maximum angle θmax = 100◦ allowable by the fish
biomechanics. We applied this constraint to the three most
plausible strategies: distance-optimal, orthogonal, and antipodal.
For each constrained strategy, we repeated the analysis presented
above under precise and noisy sensing and response. Results of the
K–L divergence and AIC analysis for the constrained strategies
are shown in Fig. 6. Compared to the unconstrained strategies,
penalizing large turns makes all three strategies fit better the
experimental data across all datasets, with or without added
noise, with the exception of the distance-optimal strategy for
the mid-speed predator. Under precise sensing and response,
the relative ranking of the constrained strategies (Fig. 6A) is
similar to the original ranking (Fig. 4A), with the distinction that
the orthogonal strategy at slow and mid-speed predator speeds
surpasses the distance-optimal strategy and becomes the best
ranking model. Under noisy sensing and response, the antipodal
strategy ranks higher than the distance-optimal strategy in all but
the slow predator dataset (Fig. 6B). Importantly, whether precise
or noisy, the orthogonal strategy fits the experimental data better
than the other two in all datasets.

Discussion

We developed a comprehensive framework for resolving evasion
strategy from kinematic measurements. Our approach considers
multiple hypotheses, each defined mathematically (Fig. 1), that
address the role of sensorimotor noise (Fig. 3) and incorporate
the effects of biomechanical constraints (Figs. 5–6). Importantly,
our approach provides a rigorous methodology, rooted in
strong-inference principles (27), for revealing the strategy that
best fits previous kinematic measurements of zebrafish larvae.
This approach eliminates bias toward a particular hypothetical
strategy, as done in a previous study that favored the contralateral
strategy from the dataset presently analyzed (17).

We found that the responses of zebrafish larvae to evade a
predator are best characterized by the orthogonal strategy (Fig. 4).
This finding challenges the notion that a prey aims either to
solely confuse, or maximize its distance from, the predator with
its escape (16). The kinematics of zebrafish do not exhibit
the uniform distribution of escape direction θ characteristic
of a pure-protean strategy (SI Appendix, Fig. S2E) (13–15).
Instead, larvae exhibited correlations between θ and predator
state, including angular position φ (SI Appendix, Fig. S5) and
heading ψ (SI Appendix, Fig. S7). The distance-optimal strategy
is more predictive of zebrafish kinematics but is inferior to the
orthogonal strategy, based on K–L divergence and the AIC scores
(Figs. 4 and 6). Therefore, zebrafish larvae do not conform to
the classic dichotomy of models for prey strategy. Although the
prevailing patterns favor an orthogonal strategy, variation about
the predictions for this hypothesis allows for the possibility of a
mixed strategy that could hinder a predator’s ability to anticipate
the prey’s direction. These results are relevant to predator–prey
encounters, and hence the ecology, of fish species and reflect the
advantages and constraints of the prey’s neurophysiology and
biomechanics.

The distance-optimal strategy requires sensing that may exceed
the abilities of larval fish. This strategy requires detection of
the speed of the approaching predator (Table 1), but larval
fish possess poor visual acuity, compared to adult fish, due
to a relatively small number of retinal cells (41). It has been
demonstrated that the escape is triggered by a threshold diameter
of a looming visual stimulus, which may be simulated as a circle
with an expanding diameter (19). A looming stimulus alone
does not offer the means to differentiate between threats that are
small and fast or large and slow. Therefore, the visual system of
larval fish may offer a sensory constraint on its ability to perform
the distance-optimal strategy. A more sophisticated visual system
could allow for additional cues to gauge the speed or size of
a predator, but the processing time necessary to formulate a
distance-optimal response may still pose a liability in evasion
speed compared with the orthogonal strategy.

The orthogonal strategy merely requires an estimate of the
predator’s heading and offers tactical benefits relative to many
of the alternatives. This strategy is equivalent to the distance-
optimal strategy for a high-speed approach (U/V � 1) and
therefore succeeds in maximizing the prey’s distance from a fast
predator at reduced sensing requirements (Table 1). It is the

BA

Fig. 6. Evaluation of the constrained strategies that consider the physical constraint on turning. Results are shown for the three best-performing models.
(A) K–L divergence estimates of the constrained models with precise sensing and response (hollow bars), shown with the results of the original models (solid
bars, from Fig. 4A). In all four datasets, the constrained models provide discernibly lower K–L divergence estimates and thus better fit to experimental data
than the original models, except the distance-optimal strategy for the mid-speed predator. The orthogonal strategy improved the most after imposing the
constraint, making it fit the data best in all datasets. (B) The normalized relative AIC for the constrained models with optimized noise in sensing and response,
compared to results using the original models in Fig. 4B. The orthogonal strategy still provides the best fit to all datasets, marked by the lowest AIC scores, and
its advantage over the second best model is more noticeable after imposing the constraint. The constrained antipodal strategy performs comparable to or
even better than the constrained distance-optimal strategy.
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fastest predators that likely present the greatest threat to the prey.
The orthogonal strategy offers an additional tactical advantage by
evading in a direction that is challenging for a fast-approaching
predator to follow because, in order for the predator to execute
such large turn at high speed, it needs a large turning radius,
which could increase its distance from the prey even further.

The predictions of the orthogonal strategy improved in their fit
to measured kinematics when we considered constraints imposed
by the biomechanics of the C-start (Fig. 6). In particular, our
model of a three-link fish in potential flow accurately describes
the relationship between the change in fish shape and its turning
motion during evasion (Fig. 5). By mapping maximum bending
angle to turning angle, the model predicted an upper limit
(around 100◦) on achievable turning motion, consistent with the
maximum angle observed in zebrafish exposed to a lateral looming
stimulus (19, 23). The improvement in model predictions that
included mechanics demonstrates the influence of the constraints
imposed by the prey biomechanics and its interaction with the
fluid environment on the evasion strategy of zebrafish larvae.

Comparing the K–L divergence and AIC values across slow,
intermediate, and fast predators, the prevalence of the orthogonal
strategy is clearest in the case of the fast predator (Figs. 4 and 6).
This feature can be related to the fact that a weak stimulus (slow
predator) is more likely to trigger an escape response via the less
predictable, long-latency neural pathway (42, 43), as opposed to
the fast pathway with minimal latency between perceived danger
and motor response (44). An untangling of these features requires
a deeper investigation of how our analytical framework relates to
the neurophysiology underlying zebrafish evasion.

Our study combined tools from information theory and
probabilistic methods with behavioral evasion models and
physics-based models of the C-start biomechanics to develop
a comprehensive analytical approach and thereby determine
the evasion strategy of zebrafish larvae. Aside from the details

of the biomechanics model, nothing about our approach is
specific to the study of fish. Our analysis could be applied
to the myriad of studies that have measured escape responses
relative to a predator’s approach in a diversity of animals (5–10).
This approach may therefore be applied broadly to the study
of predator–prey encounters to reveal the strategic basis of this
fundamental aspect of animal behavior.

Data, Materials, and Software Availability. All study data are included in
the article and/or SI Appendix. The relevant data and code is available at
https://github.com/ekanso/EvaluatingEvasionStrategies. Previously published
data were used for this work. We used the raw data that was previously analyzed
and published in (17). We analyzed the data from scratch, so-to-speak, and we
do not repeat or reuse any of the figures published in this previous work.
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