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The wobbling-to-swimming transition of rotated helices
Yi Man and Eric Laugaa)

Department of Mechanical and Aerospace Engineering, University of California San Diego,
9500 Gilman Drive, La Jolla, California 92093-0411, USA

(Received 27 November 2012; accepted 12 June 2013; published online 19 July 2013)

A growing body of work aims at designing and testing micron-scale synthetic swim-
mers. One method, inspired by the locomotion of flagellated bacteria, consists of
applying a rotating magnetic field to a rigid, helically shaped, propeller attached to a
magnetic head. When the resulting device, termed an artificial bacteria flagellum, is
aligned perpendicularly to the applied field, the helix rotates and the swimmer moves
forward. Experimental investigation of artificial bacteria flagella shows that at low
frequency of the applied field, the axis of the helix does not align perpendicularly
to the field but wobbles around the helix, with an angle decreasing as the inverse of
the field frequency. Using numerical computations and asymptotic analysis, we pro-
vide a theoretical explanation for this wobbling behavior. We numerically demonstrate
the wobbling-to-swimming transition as a function of the helix geometry and the di-
mensionless Mason number which quantifies the ratio of viscous to magnetic torques.
We then employ an asymptotic expansion for near-straight helices to derive an analyt-
ical estimate for the wobbling angle allowing to rationalize our computations and past
experimental results. These results can help guide future design of artificial helical
swimmers. C© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4812637]

I. INTRODUCTION

A significant effort in the fluid mechanics literature has focused on the individual and collective
dynamics of low-Reynolds number swimmers. The original work in the field, started decades ago,
aimed at quantifying the kinematics and energetics of biological microorganisms such as bacteria,
spermatozoa, or plankton.1, 2 Recently, fluid mechanical studies have also focused on the dynamics
of artificial microswimmers, motivated in part by potential applications of small-scale locomotion
to targeted drug delivery, micro-surgery, or diagnostics.3–6

As is now well known, the physics of swimming in Stokes flows is quite different from that of
swimming on a human length scale. The oft-cited distinguishing property is the scallop theorem,7

which states that locomotion by a sequence of shape which is reciprocal (i.e., identical under a
time-reversal symmetry) leads to zero net propulsion. So, for example, the flapping of the fins of a
scuba diver does not work on small length scales. Biological organisms are able to circumvent the
constraints of the theorem by deforming their bodies or appendages (flagella) in a wave-like fashion
breaking the time-reversibility requirement.8, 9

Broadly speaking, three different types of synthetic micro/nano swimmers have been proposed.
The first kind exploits chemical reactions on patterned catalytic surfaces and the flow resulting from
phoretic or electrokinetic motion.10–16 The second type, actuated by external (typically magnetic)
fields, exploits the presence of a nearby surface to escape from the constraint of the scallop theorem
under a time-periodic actuation.17–19 The final category of synthetic swimmer is inspired by the
locomotion strategy of flagellated bacteria, namely the rotation of one or many helical flagella.20

Straight flexible filaments can acquire chirality when actuated in rotation by an external field, leading
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FIG. 1. Experimental dependence of helix (artificial bacterial flagella) wobbling angle as a function of the magnetic field
frequency (log-log scale), reproduced from Ref. 27. The line in the figure has the slope of −1 showing that the wobbling
angle scales as the inverse of the frequency.

to propulsion scaling nonlinearly with the field frequency.21–23 Alternatively, the chirality can be
built in the design and fabrication of the filament. The simplest examples are rigid helical filaments
attached to magnetic heads which, under an externally rotating magnetic field, rotate as cork-screws
and lead to forward motion.24–26

In this paper, we focus on the dynamics of these rigid helical propellers, referred to in the
literature as artificial bacteria flagellum (plural, flagella). Different experimental protocols have
been proposed to design high-speed artificial bacteria flagella capable of precise motion control.
One method uses a self-scrolling technique to fabricate a nanobelt-based artificial bacteria flagellum
consisting of a helical metal tail attached to a thin square soft-magnetic metal head.24 This helix has
a width of 1.8 µm, a wavelength of 10 µm, and is equipped with a square head, of width 1.8 µm,24, 27

which can alternatively be replaced by a microholder to allow cargo transport.28 A different design
was implemented using glancing angle deposit.25 The helix in this case is made of silicon dioxide,
and has a width of 200–300 nm and a length of 1–2 µm.25 In both cases, the artificial bacteria
flagella possess a magnetic moment perpendicular to the long axis of the helix and are controlled
by an externally rotating magnetic field generated by triaxial Helmholtz coils. Under this actuation,
the nano-belt based swimmer in Ref. 24 with four wavelengths is able to swim with a velocity of
approximately 5 µm/s at an input frequency of about 10 Hz while the glass (silicon dioxide) helix
from Ref. 25 can swim at a velocity of approximately 40 µm/s at a field frequency of about 150 Hz.

When the axis of the helix aligns with the swimming direction, local thrust arising from the
fluid drag is everywhere directed along the helix axis.8 Therefore, in order for artificial bacteria
flagella to be efficient, it is experimentally important that their axis remain always perpendicular
to applied field, in which case one would then expect a swimming velocity scaling linearly with
the field frequency.24, 25, 27 Experimentally, problems are however seen to arise at both high and low
frequencies. When the frequency is larger than a critical value (step-out frequency), the viscous
torque becomes larger than the typical magnetic torque and the helix can no longer follow the
field.26, 27

Perhaps more surprisingly, at low field frequency, the axis of the artificial bacteria flagellum
is observed experimentally not to remain perpendicular to the plane of the magnetic field but
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instead undergoes a periodic precessive movement at an angle with the (desired) average swimming
direction. This movement, referred to as wobbling, is best characterized by an average wobbling
angle,27 with straight swimming corresponding to a wobbling angle of zero. At low frequencies
(typically below a few Hertz in the experiments of Ref. 27), the wobbling angle is observed to
increase as the frequency decreases, from zero up to a maximum of 90◦ at the lowest test frequency
(meaning that, in this limit, the helix axis actually rotates at a right angle with respect to the desired
swimming direction). Plotting the measured wobbling angle from Ref. 27 in Fig. 1, we see that that
angle, β, scales as the inverse first power of the field frequency, β ∼ ω−1. In this paper, we use
numerical computations and a theoretical analysis to provide a physical model for this wobbling
behavior.

The paper is organized as follows. In Sec. II, we first build a mathematical model of the dynamics
of artificial bacteria flagella based on the mechanical balance of forces and torques with resistive
force theory used to describe the hydrodynamics. In Sec. III, we then employ numerical computations
to characterize the steady-state locomotion of artificial bacteria flagella and demonstrate numerically
a transition from wobbling to swimming with a similar inverse frequency scaling as the one seen
experimentally. In Sec. IV, we employ an asymptotic analysis to provide an analytical model for
the wobbling behavior, recovering in particular the scaling with the frequency and predicting the
geometrical factors affecting it. Finally, Sec. V concludes the paper with a discussion.

II. MODELING THE DYNAMICS OF ARTIFICIAL BACTERIAL FLAGELLA

A. Geometry

We model an artificial bacterial flagellum as a rigid helix of circular cross-section with no head,
as illustrated in Fig. 2. The geometric parameters are therefore: the radius of helical body (R), its
wavelength along the helix axis (λ), the helix angle (θ ), the radius of the helix cross-section (r), and
the number of wavelength (n). We set up two frames of reference, the laboratory frame, denoted
(e1, e2, e3), and the frame attached to the body, termed (ex , ey, ez). The wobbling angle, which is

FIG. 2. Geometry of the rigid helix as a model for an artificial bacterial flagellum. The parameters of the helix are its
wavelength λ, the helix angle θ , the radius R, the diameter of the cross-section 2r, and the number of wavelengths n. The
wobbling angle, which is the angle between the axis of the helix and the mean forward velocity, is denoted β. The vectors
(e1, e2, e3) and (ex , ey , ez) constitute the laboratory frame and body frame, respectively. The magnetic field, B, rotates in the
(e1, e2) plane with frequency ω.
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the angle between the axis of the helix (ez) and the desired direction of the forward velocity (e3),
is denoted β. In the body frame, the shape of the helix remains constant and is described by the
location vector, xh , of material points along the helix centerline as

[xh]body = [R cos(καs), R sin(καs),αs]T , (1)

where s is the arclength coordinate, κ is the wavenumber, and α = cos θ . In this paper, we use the
subscripts “body” and “lab” when we explicitly give the components of a vector to denote in which
frame of reference these components are to be understood. We also denote vectors as column vectors
and thus use a transpose sign, T, when the coordinates are written along a row.

B. Dynamics

1. External torque

The locomotion of the artificial bacteria flagellum is actuated by an external magnetic field, B,
rotating in the (e1, e2) plane with frequency ω and amplitude B0 as

[B]lab = B0[cos(ωt), sin(ωt), 0]T . (2)

Experimentally this magnetic field provides an external torque to the head of the artificial flagellum
but no external force. Since the presence of the head is not necessary from a hydrodynamic standpoint
to obtain wobbling, we ignore it hydrodynamically in our model. As a proxy for the magnetization
of the head we assume that a constant magnetic moment of magnitude H, is present along the ey

direction in the body frame. The torque imposed by the magnetic field, Lm , is then obtained as

Lm = Hey × B. (3)

2. Hydrodynamics

In the experiments of Ref. 27, the typical rotation frequency of the field reaches a maximum
of tens of Hz and the helix radius is on the order of a few microns, leading to a typical Reynolds
number for locomotion in water much less than unity. The fluid dynamics for the flow around the
artificial bacteria flagellum is thus well approximated by a solution to the incompressible Stokes
equations. Given the slenderness of the helical geometry, it is convenient to use resistive-force theory
to describe the distribution of forces and moments on the moving helix.8, 29–31 The basic assumption
of resistive-force theory is that the hydrodynamic forces acting on the slender helix moving through
the fluid per unit length, dFv , is locally proportional, albeit in an anisotropic fashion, to the relative
velocity, U, between the helix and the surrounding fluid. Given the unit tangent vector along the
helix, t = dxh/ds, and the shear viscosity of the fluid, µ, this linear relationship is written as

dFv = −ξ‖U‖ − ξ⊥U⊥, (4)

where U‖ = (U · t)t and U⊥ = U − U‖ are the components of velocity along the tangential and
normal directions respectively and ξ ‖ and ξ⊥ are the corresponding viscous drag coefficients29

ξ‖ ≈ 2πµ

ln(2λ/r ) − 1/2
, (5a)

ξ⊥ ≈ 2ξ‖. (5b)

Resistive-force theory is the leading-order term in a systematic expansion of the flow around slender
bodies in powers of ∼(ln L/r)−1, where L is the total length of helix.8, 30–33 Although resistive-force
theory can lose some features of the interrelations between the fluid and curved geometry,34, 35 we
apply it for its simplicity and higher-order corrections can be included in a systematic fashion.

With the force distribution, dFv , known everywhere along the helix, it is straightforward to
calculate its contribution to the net moment per unit length acting on the helix as xh × dFv . An
additional contribution to a torque on the helix arises from its instantaneous rotation around its
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centerline, described by a moment density dLr = 4πµr2(! · t)t, where ! is the helix rotation
rate.36 This term is typically of order ∼(r/L)2 smaller than the torque arising from resistive-force
theory and can usually be disregarded, but it becomes important when the helix is a near-rod as it
prevents its viscous mobility matrix to become singular. We therefore keep it in our formulation and
write the net hydrodynamic torque per unit length acting on the helix as

dLv = xh × dFv + dLr . (6)

Integrating Eqs. (4) and (6) along the flagellum finally leads to a linear relationship relating the
total hydrodynamic force, Fv , and torque, Lv , to the rigid-body velocity, U, and rotation rate, !, of
the swimming helix as

[
Fv

Lv

]
= D

[
U
!

]
· (7)

The 6 × 6 viscous resistance tensor, D, has constant coefficients in the body frame of the helix.
The calculation for its components is straightforward but tedious, and the final nondimensionalized
results are given in the Appendix.

3. Force and torque balance

The dynamics of the helix is governed by the balance of force and torque as

Fv = 0, (8a)

Lv + Lm = 0. (8b)

Since the viscous resistance tensor, D, has constant coefficients when expressed in the body frame,
it is necessary to enforce Eq. (8) in the body frame. The kinematics of the body frame is described
by the three vector equations

dex

dt
= ! × ex ,

dey

dt
= ! × ey,

dez

dt
= ! × ez . (9)

The combination of Eqs. (7)–(9) has a total of 15 unknowns (6 kinematics components and 9
components of the rotating frame coordinates) together with a 6 × 6 linear system (Eqs. (7) and (8))
and a 9 × 9 ODE system (Eq. (9)) leading to a closed system.

C. Nondimensionalization

In order to nondimensionalize the problem, we use the wavelength ) calculated along the
helix centerline as length scale () = λ/cos θ ) and the inverse of magnetic field frequency, ω−1,
as the characteristic time scale. Geometrically, there are three independent dimensionless pa-
rameters describing the helix, namely the helix angle θ , the number of wavelengths n, and the
dimensionless radius of the flagellum, which we denote γ . The viscous drag coefficients are
nondimensionalized by the fluid viscosity and thus we have, using bars to denote dimensionless
quantities,

ξ̄‖ = ξ‖

µ
= 2π

ln(2 cos θ/γ ) − 1/2
,

ξ̄⊥ = ξ⊥

µ
= 2ξ̄‖.

(10)

Using B0 as the scale of the magnetic field we have therefore [B̄]lab = [cos t̄, sin t̄, 0]T , where t̄ is
the dimensionless time, t̄ = ωt . The dimensionless version of the force and torque balance, Eq. (8),
is given by

µω)2F̄v = 0, (11a)

µω)3

H B0
L̄v + L̄m = 0. (11b)
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Inspecting Eq. (11b), we observe that a dimensionless group appears in the torque balance. It
is termed a Mason number, Ma = µω)3/HB0, and quantifies the typical ratio of hydrodynamic to
magnetic torque. If we write the resistance tensor in the body frame, D̄, as composed of 4 sub-tensors

D̄ =
[

D̄a D̄b
D̄bT D̄c

]
, (12)

then the final dimensionless equations to solve are given by the system

D̄aŪ + D̄b!̄ = 0, (13a)

Ma(D̄bT Ū + D̄c!̄) + ey × B̄ = 0, (13b)

[B̄]lab = [cos t̄, sin t̄, 0]T , (13c)

dex

dt
= !̄ × ex ,

dey

dt
= !̄ × ey,

dez

dt
= !̄ × ez . (13d)

III. NUMERICAL RESULTS

To address wobbling we first turn to numerical simulations of the system in Eq. (13). To be
relevant to the experiments in Ref. 27, we fix the number of wavelengths, n, to be 3 or 4 and we
pick γ = 2.3 × 10−3. We vary the helix geometry by addressing four different helix angles, namely
(π /10, π /6, π /4, π /3), and we let the Mason number, Ma, range from 0.001 to 0.1. At each time
step, the system of equations, Eq. (13), is solved in two stages. First, with the current location of
the body frame, we invert the linear system given by Eqs. (13a) and (13b) numerically to obtain the
velocity and rotation rate. Second, using that solution for the rotation rate, we solve Eq. (13d) for the
new coordinates of the laboratory frame using a Crank-Nicolson method. At t = 0, the velocity and
rotation rate are set to zero, the body frame is aligned with the lab frame, and we then let the helix
position and orientation evolve in time until a periodic state is reached (for other initial conditions
the same periodic state is reached).

Our numerical simulations demonstrate the experimentally observed transition from wobbling
at low Mason number to directional swimming at high Mason number. To illustrate this transition we
plot in Figs. 3 and 4 the dynamics, both in the body frame (top) and the laboratory frame (bottom)
of two helices displaying qualitatively different behaviors. In Fig. 3 we show the velocity (left) and
rotation rate (right) of a helix with n = 4 wavelengths and a helix angle of θ = π /4 at a Mason number
of Ma = 0.4. The helix is seen to swim straight (small value of the long-time wobbling angle β ≈
0.9◦). In contrast we show in Fig. 4 the kinematics for the same helix at a smaller Mason number of
Ma = 0.0063. In that case, as can clearly be seen in Fig. 4(c), the components of the helix velocity
in the plane perpendicular to the average swimming direction are time-periodic and of amplitude
large compared to the average swimming speed along the third direction. This is an indication of
wobbling with a large angle (here, β ≈ 35◦). Wobbling can also be seen by comparing the values
of the rotation rates in the body frame in Figs. 3(b) and 4(b). When no wobbling occurs and the
helix is swimming straight, the body-frame rotation rate includes only a component in the direction
of the helix axis (z direction). In contrast, for a helix with significant wobbling, a component of the
rotation rate perpendicular to the direction of the axis helix exists (x direction), of the same order as
the axial rotation rate.

To further quantify wobbling, we perform simulations where we measure the time-variation
of the wobbling angle. The results for n = 3 are illustrated in Fig. 5 for two values of the helix
angles. For all values of the Mason number, we observe convergence of the wobbling angle to a
steady value. The dependence of that long-time, steady value on the Mason number is shown in
Fig. 6 for n = 3 (left) and n = 4 (right) and for four values of the helix angle. For every helix, the
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FIG. 3. Example of a straight swimming artificial bacteria flagellum. Velocity (left) and rotation rate (right) in the body
frame (top) and laboratory frame (bottom) with n = 4 wavelengths, a helix angle of θ = π /4, and Ma = 0.4. In the body
frame, both the velocity and rotation rates reach steady values, while in the laboratory frame the velocities in the e1 and e2
directions oscillate around a zero mean. The long-time wobbling angle in this case is almost zero (β ≈ 0.9◦) and thus the
helix essentially swims in a straight line. The four panels display the variation with the dimensionless time of (a) velocity in
the body frame; (b) rotation rate in the body frame; (c) velocity in the laboratory frame; and (d) rotation rate in the laboratory
frame.

wobbling angle is 90◦ for low Ma number while it decreases to zero as β ∼ Ma−1 for large values
of the Mason number. This dependence with Ma is reminiscent of the inverse frequency behavior
seen experimentally in Fig. 1.27 For a fixed Mason number, the wobbling-to-swimming transition is
also affected by the helix geometry. Specifically, directed swimming happens sooner (meaning the
critical frequency is smaller) for helices with larger number of wavelengths (n) and smaller helix
angles (θ ).

IV. ASYMPTOTIC ANALYSIS

Our numerical computations demonstrate the wobbling-to-swimming transition. We saw in
particular in the transition region an inverse linear relationship between wobbling angle and Mason
number. In this section, we present an analytical description of the helix dynamics and recover
the β ∼ Ma−1 scaling. In order to proceed, we take advantage of the fact that if the helix angle
is zero, θ = 0, the helix turns into a rod which does not swim but for which the steady state
dynamics can be solved exactly. We therefore examine the dynamics analytically in the small-θ
limit.

We consider the dimensionless dynamical system given by Eq. (13) and drop the bars for
notation convenience. We pick the number of wavelengths, n, to be an integer in order to simplify
some of the algebra (although our procedure remains valid for non-integer number of wavelengths).
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FIG. 4. Same as Fig. 3 but with a Mason number decreased to Ma = 0.0063. In this case significant wobbling is obtained
with β ≈ 35◦. Compared to Fig. 3 the mean velocity in the forward direction has decreased while the velocity amplitudes in
other two directions have increased. In addition, the rotation rate in the ex direction is no longer zero.

First off, in order to facilitate the expansion, we write Eq. (13) component by component as
(
Dai jU j + Dbi j+ j

)
ei = 0, (14a)

Ma
(
Db jiU j + Dci j+ j

)
ei + εmnleyn Blem = 0, (14b)

dei

dt
= ! × ei = ε jkp+keipe j = εi jk+ke j . (14c)

FIG. 5. Dependence of the long-time wobbling angle, β (in degrees), on the dimensionless time, ωt, for a helix with n = 3
wavelengths and an angle of θ = π /6 (a) and θ = π /4 (b).
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FIG. 6. Dependence of the long-time wobbling angle β (in degrees) on the Mason number, Ma, for four different helix
angles (π /10, π /6, π /4, π /3) and a number of wavelengths n = 3 (left) and n = 4 (right). Results are plotted on a log-log
scale demonstrating a β ∼ Ma−1 relationship in the wobbling-to-swimming transition.

In Eq. (14), in order to differentiate between base vectors in the laboratory vs. body frame we use, the
following convention: vectors with subscripts (m, n, l) are in the laboratory frame (therefore 1, 2, 3)
while those with with subscripts (i, j, k, p) are in the body frame (therefore x, y, z). As a consequence,
the terms eyn in Eq. (14b) and eip in Eq. (14c) are different: the first one refers to the components in the
laboratory frame of the vector ey while the latter refers to the pth components of ei in the body frame,
i.e., δip. In the body frame, we write U = Ux ex + Uyey + Uzez and ! = +x ex + +yey + +zez , and
similarly for each component of the tensor D. The advantage of using the body frame is that, in it,
the components of D are all constant. The components of body frame vector, ei , in the laboratory
frame are written as [ei ]lab = [ei1, ei2, ei3]T , for any i is in (x, y, z).

Aiming at solving Eq. (14) order by order, we expand all variables in powers of θ as

{Ui ,+i , Di j , [ei ]lab, ξ‖} = {U (0)
i ,+

(0)
i , D(0)

i j , [ei ]
(0)
lab, ξ

(0)
‖ }

+ θ{U (1)
i ,+

(1)
i , D(1)

i j , [ei ]
(1)
lab, ξ

(1)
‖ }

+ . . . , (15)

for any i, j in (x, y, z). In the body frame, the coefficients of the tensor D, written under matrix form
as Dbody , are given in the Appendix. They involve the helix geometry and the viscous resistance
coefficient, ξ ‖. The expansion for that coefficient is

ξ‖ = 2π

ln(2 cos θ/γ ) − 1/2
= 2π

[
ln

2
γ

− 1
2

− θ2

2
+ o(θ2)

]−1

= 2π

ln(2/γ ) − 1/2
+ πθ2

[ln(2/γ ) − 1/2]2 + o(θ2). (16)

We therefore obtain ξ
(0)
‖ = 2π/[ln(2/γ ) − 1/2], ξ (1)

‖ = 0, and ξ
(2)
‖ = π/[ln(2/γ ) − 1/2]2. Using the

expressions in the Appendix, it follows that

[D](0)
body = ξ

(0)
‖





−2n 0 0 0 −n2 0
0 −2n 0 n2 0 0
0 0 −n 0 0 0
0 n2 0 − 2n3

3 0 0
−n2 0 0 0 − 2n3

3 0
0 0 0 0 0 4πγ 2

ξ
(0)
‖

n





, (17)
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and

[D](1)
body = ξ

(0)
‖





0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 n

2π
0

0 0 0 0 0 0
0 0 n

2π
0 0 − n

2π2

0 0 0 0 − n
2π2 0




. (18)

A. Zeroth order solution

At zeroth order, the helix becomes a rigid rod. In that case, Eq. (14) becomes
(

Da(0)
i j U (0)

j + Db(0)
i j +

(0)
j

)
e(0)

i = 0, (19a)

Ma
(

Db(0)
j i U (0)

j + Dc(0)
i j +

(0)
j

)
e(0)

i + εmnle(0)
yn Blem = 0, (19b)

de(0)
i

dt
= εi jk+

(0)
k e(0)

j . (19c)

The obvious steady solution to Eq. (19) is then given by

U (0)
x = U (0)

y = U (0)
z = 0, (20a)

+(0)
x = +(0)

y = 0, +(0)
z = 1, (20b)

[ex ](0)
lab = [sin(t + ψ0),− cos(t + ψ0), 0]T , (20c)

[ey](0)
lab = [cos(t + ψ0), sin(t + ψ0), 0]T , (20d)

[ez]
(0)
lab = [0, 0, 1]T , (20e)

where ψ0, satisfying

sin ψ0 = 4πγ 2nMa, (21)

is the phase delay between the applied field and the rotation of the rod. At leading order, the rod
simply is aligned with, and rotates around, the axis perpendicular to the plane of the applied field
with no wobbling.

B. First order solution

At order O(θ ), Eq. (14) become

0 =
(

Da(0)
i j U (1)

j + Db(0)
i j +

(1)
j + Da(1)

i j U (0)
j + Db(1)

i j +
(0)
j

)
e(0)

i

+
(

Da(0)
i j U (0)

j + Db(0)
i j +

(0)
j

)
e(1)

i , (22a)
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0 = Ma
(

Db(0)
j i U (1)

j + Dc(0)
i j +

(1)
j + Db(1)

j i U (0)
j + Dc(1)

i j +
(0)
j

)
e(0)

i

+ Ma
(

Db(0)
j i U (0)

j + Dc(0)
i j +

(0)
j

)
e(1)

i + εmnle(1)
yn Blem, (22b)

de(1)
i

dt
= εi jk

(
+

(0)
k e(1)

j + +
(1)
k e(0)

j

)
. (22c)

The system of equation for the first-order unknowns in Eq. (22) is linear and can thus be solved
exactly. Using Eq. (22a), the number of unknowns can be decreased by three

U (1)
x = −n

2
+(1)

y , U (1)
y = n

2
+(1)

x , U (1)
z = 0. (23)

Then using Eq. (22b) and combining it with Eq. (23), the rotational components can be obtained as
the function of the components of body frame vectors expressed in the laboratory frame as

+(1)
x = − 6

ξ
(0)
‖ n3Ma

[
e(1)

y3 cos ψ0 − e(1)
z1 sin ψ0 sin(t + ψ0) + e(1)

z2 sin ψ0 cos(t + ψ0)
]
, (24a)

+(1)
y = − 3

π2n2
+ 6 sin ψ0

ξ
(0)
‖ n3Ma

[
e(1)

y3 + e(1)
z1 cos(t + ψ0) + e(1)

z2 sin(t + ψ0)
]
, (24b)

+(1)
z = −e(1)

z3 + 1
sin ψ0

(e(1)
y2 cos t − e(1)

y1 sin t). (24c)

Finally substituting Eq. (24) into Eq. (22c), we obtain the full order-one solution as

+(1)
x = 18 cos ψ0

π2ξ
(0)
‖ n5Ma

(
1 + 24πγ 2

ξ
(0)
‖ n2

) , +(1)
y = − 3

π2n2
, +(1)

z = 0, (25a)

[ex ](1)
lab =



0, 0,
18 cos ψ0

π2ξ
(0)
‖ n5Ma

(
1 + 24πγ 2

ξ
(0)
‖ n2

)





T

, (25b)

[ey](1)
lab =

[
0, 0,− 3

π2n2

]T

, (25c)

[ez]
(1)
lab = −

√
[+(1)

x ]2 + [+(1)
y ]2 [cos(t + ψ0 − ψ1), sin(t + ψ0 − ψ1), 0]T , (25d)

with tan ψ1 = +(1)
x /+(1)

y .

C. Wobbling angle

With the knowledge of both the zeroth and first-order solution, we can now calculate our

prediction for the wobbling angle, β. It is defined as sin β =
√

e2
z1 + e2

z2. Since the zeroth-order
solution shows no wobbling, we have β = O(θ ) and thus can use the approximation sin β ≈ β. Given
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Eq. (25d), we therefore obtain β ≈ θ
([

+(1)
x

]2 +
[
+(1)

y

]2
)1/2

which, using Eq. (25a), becomes

β ≈ 3θ

π2n2








6 cos ψ0

ξ
(0)
‖ n3Ma

(
1 + 24πγ 2

ξ
(0)
‖ n2

)





2

+ 1





1/2

. (26)

Our model, Eq. (26), predicts that the wobbling angle decreases with the Ma number, increases
with the helix angle, and decreases for large number of wavelengths n, which are that the three main
observations from our computational results. In addition, for low values of Ma, we get from Eq. (26)
the approximate angle

β ≈ 18θ cos ψ0

π2ξ
(0)
‖ n5Ma

(
1 + 24πγ 2

ξ
(0)
‖ n2

) · (27)

This can be further simplified by noting that cos ψ0 =
√

1 − 16π2γ 4n2Ma2 ≈ 1 at low Ma. In
addition, 24πγ 2/ξ

(0)
‖ n2 ≈ 12γ 2[ln(2/γ ) − 1/2]/n2 ( 1 for γ ( 1. Our approximation, Eq. (27),

can therefore be further simplified as

β ≈ 18θ

π2ξ
(0)
‖ n5Ma

≈ 9[ln(2/γ ) − 1/2]
π3

θ

n5Ma
· (28)

The theoretical approach allows therefore to recover the β ∼ Ma−1 scaling observed experimentally
and numerically in the wobbling-to-swimming transition.

D. Time-averaged swimming velocity

Using our model, we can go beyond the prediction for the wobbling angle and calculate the
time-averaged swimming velocity of the helix at leading order. The swimming speed is written as
U = Ui ei in the body frame, which can be expended as

U = U (0)
i e(0)

i + θ
(

U (0)
i e(1)

i + U (1)
i e(0)

i

)
+ θ2

(
U (0)

i e(2)
i + U (1)

i e(1)
i + U (2)

i e(0)
i

)
+ ..., (29)

where i is in (x, y, z). The forward velocity of interest is the component U3 along the direction
perpendicular to the applied magnetic field. With the information from Eqs. (20), (23), and (25), we
get the velocity in the laboratory frame

U1 = −θn
2

√[
+

(1)
x

]2
+

[
+

(1)
y

]2
sin(t + ψ0) + o(θ ), (30a)

U2 = θn
2

√[
+

(1)
x

]2
+

[
+

(1)
y

]2
cos(t + ψ0) + o(θ ), (30b)

U3 = o(θ ), (30c)

and therefore we have to go to the next order in θ to obtain the leading-order behavior for U3. At
order O(θ2), we have

U(2) = U (0)
i e(2)

i + U (1)
i e(1)

i + U (2)
i e(0)

i , (31)

and given that we know that U (0)
i = U (1)

z = e(0)
x3 = e(0)

y3 = 0, and e(0)
z3 = 1, we obtain

U (2)
3 = U (1)

x e(1)
x3 + U (1)

y e(1)
y3 + U (2)

z = U (2)
z , (32)
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which means we only need to solve for U (2)
z . At second order, Eq. (14a) becomes

(
Da(0)

i j U (2)
j + Db(0)

i j +
(2)
j + Da(1)

i j U (1)
j + Db(1)

i j +
(1)
j + Da(2)

i j U (0)
j + Db(2)

i j +
(0)
j

)
e(0)

i

+
(

Da(0)
i j U (1)

j + Db(0)
i j +

(1)
j + Da(1)

i j U (0)
j + Db(1)

i j +
(0)
j

)
e(1)

i

+
(

Da(0)
i j U (0)

j + Db(0)
i j +

(0)
j

)
e(2)

i = 0. (33)

Combining the solutions in Eqs. (20), (23), and (25), we obtain the simplifications
(

Da(0)
i j U (0)

j + Db(0)
i j +

(0)
j

)
e(2)

i = 0, (34a)

(
Da(0)

i j U (1)
j + Db(0)

i j +
(1)
j

)
e(1)

i = 0, (34b)

(
Da(1)

i j U (0)
j + Db(1)

i j +
(0)
j

)
e(1)

i = 0. (34c)

As we have Da(1)
i j = U (0)

i = 0, the corresponding terms cancel out, and Eq. (33) simplifies to
(

Da(0)
i j U (2)

j + Db(0)
i j +

(2)
j + Db(1)

i j +
(1)
j + Db(2)

i j +
(0)
j

)
e(0)

i = 0. (35)

The second order expansion of [Db]body is

[Db](2)
body = ξ

(0)
‖





− 3
8π

n 3
4 n2 0

− 3
4 n2 − 1

8π
n 0

0 0 n
2π



 + ξ
(2)
‖




0 −n2 0
n2 0 0
0 0 0



. (36)

Substituting Eq. (36) into Eq. (35), we obtain

− nU (2)
z + n

2π
+(1)

y + n
2π

= 0. (37)

With Eq. (32), this finally leads to the leading-order expression for the time-averaged swimming
speed in the laboratory frame as

U (2)
3 = 1

2π

(
1 − 3

π2n2

)
· (38)

Note that we have U3 = O(θ2), while both U1 and U2 are O(θ ), and thus for a small helix angle
the forward swimming velocity is much smaller than the velocities perpendicular to the average
swimming direction.

V. DISCUSSION

Motivated by experiments on artificial bacterial flagella driven by external magnetic fields we
address theoretically in this paper the dynamics of rigid helices under time-periodic torques. Using
numerical computations we obtain, in agreement with experimental results, that driven helices do
swim in a directed fashion at high Mason number but wobble around their mean swimming direction
for lower values of the Mason number. During the wobbling-to-swimming transition, the wobbling
angle varies as the inverse of Mason number. The shape of the helix also affects this transition and
helices with larger number of wavelengths or smaller helix angle are seen to swim more efficiently.
We then use an asymptotic analysis of the helix dynamics in the near-rod geometric limit to derive
analytically an estimate for the wobbling angle. Our prediction, Eq. (28), shows the same inverse
Ma dependence as in our computations and experimental work, and quantifies the strong influence
of the helix geometry on the swimming behavior.
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We hope our results will help guide the future design of artificial bacterial flagella. Two factors
important for the practical operation of micro-swimmers are that they remain stable while being
efficient energetically. Energy efficiency is bound to play an important role since any external source
of power not converted to useful propulsive work will be dissipated in the surrounding fluid, leading
to heating which is possibly problematic in biological environments. As is well known, a rotating
rigid helix is most efficient when its helix angle, θ , is around 40◦.8 Stability was addressed specifically
in our paper, and we now understand the dynamic and geometric factors impacting it. From Eq.
(28), we have β ∼ θ /(n5Ma) and we see that, with the value of θ fixed, stability of swimming (i.e.,
non-wobbling) will be obtained for large values of n and Ma. Recalling that Ma = µω)3/HB0,
we get a wobbling angle scaling as β ∼ θHB0/µωn5)3. Perhaps counter-intuitively, wobbling is
avoided when small magnetic field and magnetic moments are used. Low frequencies should also
be avoided. In addition, given that the total helix length is L ∼ n), we see that long helices, with
many wavelengths, are preferable.

Of course the work considered here only addressed the case of a single artificial bacterial
flagellum, and it could be that swimmers composed or more than one helices would be more stable.
For example, two identical parallel and counter-rotating helices are stable in the plane containing
the two helix axis, which would therefore constraint potential wobbling to the plane perpendicular
to it. A combination of such helix pair with its mirror image would be stable and always swim
along a straight line, but such elaborate geometry would probably require infinite ingenuity to be
implemented in practice. Decreasing length scales even further to design nanometer-scale swimmers
will further complicate the dynamics by introducing thermal fluctuations. The hunt for the ultimate
stable and efficient artificial low-Reynolds swimmer is still open.
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APPENDIX: MOBILITIES

All 21 terms of the symmetric viscous resistance matrix, [D̄]body = ξ̄‖M, are given below; the
remaining 15 terms can be found using M = MT . We use the notation α = cos θ , 2πη = sin θ ,
φ = 2πn, and n is any positive number.

M11 = −π

2
η2 sin 2φ − 2(1 − π2η2)n, (A1a)

M12 = −π

2
η2(1 − cos 2φ), (A1b)

M13 = −αη(1 − cos φ), (A1c)

M14 = −παη2n
(

1 + cos φ

2

)
+ 3

8
αη2 sin 2φ, (A1d)

M15 = παη2n
(

nπ − sin φ

2

)
+ 3

8
αη2(1 − cos 2φ) − αn2, (A1e)

M16 = η

π
(1 − 2π2η2)(1 − cos φ), (A1f)

M22 = π

2
η2 sin 2φ − 2(1 − π2η2)n, (A1g)
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M23 = αη sin φ, (A1h)

M24 = −παη2n
(

nπ + sin φ

2

)
+ 3

8
αη2(1 − cos 2φ) + αn2, (A1i)

M25 = −παη2n
(

1 − cos φ

2

)
− 3

8
αη2 sin 2φ, (A1j)

M26 = − η

π
(1 − 2π2η2) sin φ, (A1k)

M33 = (α2 − 2)n, (A1l)

M34 = −α2ηn sin φ − 4πη3(1 − cos φ), (A1m)

M35 = α2ηn cos φ + 4πη3 sin φ, (A1n)

M36 = 2παη2n, (A1o)

M44 = 3
4
α2η2n cos φ +

(
η2

4π
+ π

2
α2η2n2 − 5

16π
α2η2

)
sin 2φ −

(
1 − α2

2

)
η2n (A1p)

−2
3
α2 (

1 − π2η2) n3 + 8π3γ 2

ξ̄‖
η2

(
n − sin 2φ

4π

)
, (A1q)

M45 = 1
4
α2η2n sin φ +

(
η2

4π
+ π

2
α2η2n2 − 3

16π
α2η2

)
(1 − cos φ) + π

2
α2η2n2 (A1r)

−2π2γ 2

ξ̄‖
η2(1 − cos 2φ), (A1s)

M46 = αηn
π

(
1 − 2π2η2) sin φ − α3η

2π2
(1 − cos φ) − 4πγ 2

ξ̄‖
αη(1 − cos φ), (A1t)

M55 = −3
4
α2η2n cos φ −

(
η2

4π
+ π

2
α2η2n2− 5

16π
α2η2

)
sin 2φ −

(
1− α2

2

)
η2n (A1u)

−2
3
α2(1 − π2η2)n3 + 8π3γ 2

ξ̄‖
η2(n + sin 2φ

4π
), (A1v)

M56 = −αηn
π

(1 − 2π2η2) cos φ + α3η

2π2
sin φ + 4πγ 2

ξ̄‖
αη sin φ, (A1w)

M66 = −2η2n(1 − 2π2η2) + 4πγ 2

ξ̄‖
α2n. (A1x)
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