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Many microswimmers propel themselves by rotating microcylindrical organelles such
as flagella or cilia. These cylindrical organelles almost never live in free space, yet their
motions in a confining geometry can be counterintuitive. For example, one of the intriguing
yet classical results in this regard is that a rotating cylinder next to a plane wall does not
generate any net force in Newtonian fluids and therefore does not translate. In this work
we employ analytical and numerical tools to investigate the motions of microcylinders
under prescribed torques in a confining geometry. We show that a cylinder pair can form
four nontrivial hydrodynamic bound states depending on the relative position within the
confinement. Our analysis shows that the distinct states are the results of competing effects
of the hydrodynamic interactions within the cylinder pair and between the active cylinders
and the confinement.

DOI: 10.1103/PhysRevFluids.9.014102

I. INTRODUCTION

Rotation is a fundamental form of microorganism locomotion. Flagellated bacteria such as E.
coli move by rotating their semirigid flagella [1]; green algae Chlamydomonas swims in a helical
trajectory while rotating its cell body with the beat of two near-identical flagella [2,3]; thousands
of flagella on the surface of Volvox generate a tangential velocity at an angle of the axis of motion
that generates the swirling motion [4]. Even though body rotation may not be the most efficient way
of locomotion through the lens of hydrodynamics, it can be biologically beneficial, as it allows the
microorganisms to perceive the environment from all angles and enable crucial functions such as
phototaxis [5]. From a technological point of view, microparticles can be driven into rotation mode
relatively easily through external fields such as magnetic fields, and the driven rotations are usually
coupled with translations and can lead to interesting collective behaviors [6]. Understanding the
mechanisms of these microrotors or microrollers in complex conditions has been a point of focus
recently, as they have shown great potential in drug delivery, microsurgery, and mixing [7–10].

Biological microorganisms and artificial microswimmers almost never live in free space, and
it has been known for many decades that nearby boundaries qualitatively alter the dynamics of
microswimmers. For example, Rothschild [11] reported that Bull spermatozoa are attracted to
no-slip boundaries and suggested that it might be due to the hydrodynamic interaction between
the spermatozoa and the boundary about 60 years ago. Numerous studies have since revealed
the effects of hydrodynamic interactions from the confinement geometry to the microswimmers,
both experimentally and theoretically. Among many other interesting findings, we now know that
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E. coli swim in circular motions near the boundary due to the force- and torque-free swimming and
the hydrodynamic interactions with the boundary, and the direction of the motion depends on the
boundary type [12–14]; active particles can be trapped into closed orbits by passive colloids and can
also trap and transport passive cargos [15–17]; geometric asymmetry of the microswimmer or the
boundary can also lead to qualitatively different trajectories [18,19]. Readers are kindly referred to
a concise review of this topic given by Elgeti and Gompper [20].

Hydrodynamic interactions between multiple microswimmers and the boundary can lead them
into various interesting periodic motions, called hydrodynamic bound states. To date, many of the
models studying microswimmers assume that the swimmers do not generate torques. For example,
Crowdy and co-workers studied the dynamics of treadmilling swimmers next to no-slip boundaries
of various shapes [21–23]. On the other hand, interactions between rotating swimmers display
beautiful and intriguing dynamics that can only be studied if the model considers net torque. For
example, a pair of Volvox “dance” in multiple hydrodynamic bound states when in close proximity
to solid walls, forming the waltz and minuet bound states [24]; magnetically driven microrollers can
form various states such as “critters” or one-dimensional chains via sole hydrodynamic interactions
[25,26]. The modeling aspect of these problems is usually dealt with using singularity methods that
treat each microroller as a rotlet and image systems that account for the no-slip confinement [27–29].
Despite its cleanness and mathematical elegance, rotlet models are far-field approximations and do
not capture the dynamics well when the microrollers are in close proximity to each other and/or
the confinement. Delmotte [29] adopted a rotlet model and accounted for the finite size effect by
using the Rotne-Prager-Yamakawa mobility with wall corrections, and showed that rich dynamics
can be obtained for a microroller pair above a flat wall. They found that the different states of the
microroller pair can be obtained by altering the relative strength of gravitational forces and external
torques. Furthermore, the microroller pair would be in a stable motile orbiting mode, reminiscent of
the “critters” state observed in microroller suspensions, when the relative strength is high. Studying
the microroller pair provides us the opportunity to obtain a deep understanding of the mechanisms
behind the various states of microroller suspensions. However, the method illustrated in [29] relies
on the image systems above a no-slip planar boundary [30] that is difficult to extend to other types
of confinement.

In this paper we focus on the hydrodynamic bound states of two neutrally buoyant rotating
cylinders inside cylindrical confinement with circular cross-sectional areas. The dynamics of one
rotating cylinder inside the confinement is derived analytically, and the dynamics of a rotating
cylinder pair is computed numerically. We note that while it is straightforward to extend the
numerical method to more complex geometry, we focus on circular cylinders to allow feasible
analysis of the mechanisms. We show that a pair of rotating circular cylinders forms four nontrivial
hydrodynamic bound states, resulting from the competing effects of the hydrodynamic interactions
within the cylinder pair and between the active cylinders and the confinement.

II. MODEL AND METHODS

Consider a cylindrical confinement γ0 with a circular cross section of radius R filled with viscous
fluids. Active cylinders γk (k > 0) of radius r are suspended inside the confinement. Each active
cylinder generates a torque per unit length Mae3 about its own axis. Let the center of the confinement
be the origin and the center of the kth active cylinder be xk . The schematic figure is shown in
Fig. 1(a).

In the viscosity-dominant regime, the inertia is negligible and the fluid dynamics is governed by
the incompressible Stokes equation:

−μ∇2u + ∇p = 0, ∇ · u = 0, for x ∈ �, (1)

where � is the fluid domain, u is the fluid velocity, p is the pressure, and μ is the fluid viscosity.
The fluid velocity on the surface of the active cylinder and the confining geometry are given by
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FIG. 1. (a) Model. Active cylinders of radius r inside the confining cylinder of radius R. The active
cylinders are driven by a prescribed torque Maez per unit length. The gap between the active cylinder and
the confinement is filled with fluid of viscosity μ. γ0 denotes the surface of the confinement, and γk (k > 0)
denotes the surfaces of the active cylinders. � denotes the fluid domain bounded by the surfaces. (b) Single
active cylinder case. The prescribed torque Maez of the active cylinder generates an angular velocity ω1ez and
a translational velocity U1 in the azimuthal direction of the confinement. The active cylinder is positioned d1

units away from the center of the confinement. (c) Corotating frame that eliminates the translational velocity of
the active cylinder. In the corotating frame, the active cylinder is effectively “pinned” at the initial position and
the confinement would rotate clockwise. Quantities with asterisks are those measured in the corotating frame.
Positive directions of measured quantities are denoted by arrows.

rigid-body motion and the no-slip boundary condition:

u(x) =
{

0, for x ∈ γ0

Uk + ωkez × (x − xk ), for x ∈ γk (k > 0) , (2)

where Uk and ωk are the kth active cylinder’s centroidal translational and angular velocities,
respectively. The active cylinders also satisfy the force- and torque-balance conditions in the
viscosity-dominant regime:∫

γk

f (x)dx = 0,

∫
γk

(x − xk ) × f (x)dx + Maez = 0, (3)

where f is the fluid traction density per unit length on the cylinder boundary (k > 0).
In general, given the centroidal positions of the active cylinders, we solve Uk and ωk numerically

using a high-order boundary-integral method, similar to our previous work [31]. The details of our
implementation are included in the Supplemental Material [32].

We note that the case of a single active cylinder rotating inside the confinement can be solved
analytically. Specifically, we are interested in the rotation-induced translational velocity of the inner
cylinder when its center is d1 distance away from the center of the confining cylinder [Fig. 1(b)].
Without loss of generality, we assume the center of the active cylinder x1 is on the positive x axis.
In this setup, the x component of the translational velocity is zero by symmetry. Thus U1 = U1ey,
where U1 is the centroidal translational speed.

To find U1, we adopt the bipolar coordinate systems [33, Appendix A-12] following conventional
approaches (e.g., in [34–36]). The transformations between Cartesian and the bipolar coordinate
systems are given by

x + iy = ic cot
ξ + iη

2
, (c > 0)

x = c sinh η

cosh η − cos ξ
, y = c sin ξ

cosh η − cos ξ
,

(4)
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where ξ ∈ [0, 2π ] and η ∈ (−∞,∞) are the bipolar coordinates, and i = √−1 is the imaginary
unit. The curves given by η = η0 are a family of circles with centers at (x, y) = (c coth η0, 0) and
radius c|cschη0|. Let the active cylinder and the confinement be denoted by η = α and η = β,
respectively, where α < β < 0. The parameters α, β, and c can be solved directly from the cylinder
diameters R and r, and the center-to-center distance d1:

c =
√(

d2
1 + r2 − R2

2d1

)2

− r2, α = −arcsch(r/c), β = −arcsch(R/c). (5)

Wakiya [36] solved the force and moment exerted upon the cylinders when both cylinders are
pinned at their centers and rotate with given angular velocities. To leverage their solution, we apply
a frame transformation to cancel the active cylinder’s translational velocity U1ey. Specifically, we
choose a corotating frame at an angular velocity U1/d1 in the counterclockwise direction [Fig. 1(c)].
In this frame the confining cylinder experiences an angular velocity ω∗

0 = −U1/d1, and the inner
cylinder experiences an angular velocity ω∗

1 = ω1 + ω∗
0 and zero translational velocity. Note that

we are using the asterisk (∗) to denote the quantities in the corotating frame. Substituting into
Eqs. (2.13)–(2.14) in Wakiya [36] yields the force and moment exerted upon the active cylinder:

Fx = 0
Fy = 4πμ(rω∗

1 sinh β + Rω∗
0 sinh α) sin(α − β )/S

M = −4πμr2 sinh2 α

{
ω∗

1
sinh2(α − β )

sinh2 α
+ (ω∗

1 − ω∗
0 )

[
(α − β )

cosh(α − β )

sinh(α − β )
− 1

]}
/S,

(6)

where S = (α − β )(sinh2 α + sinh2 β ) − 2 sinh α sinh β sinh(α − β ). Fx = 0 confirms our previous
argument that the active cylinder does not have radial velocity. Note that the positive sign is used in
the expression of Fy as α < 0 in our case.

Substituting the force-balance condition (Fy = 0) and torque-balance condition (M + Ma = 0)
yields

ω∗
0 = SMa

4πμr2 sinh2 α

/{
R sinh α sinh2(α − β )

r sinh β sinh2 α
+

(
R sinh α

r sinh β
+ 1

)[
(α−β )

cosh(α − β )

sinh(α − β )
− 1

]}
,

(7)
and the translation speed is simply

U1 = −ω∗
0d1. (8)

III. RESULTS

Figure 2 shows the translational velocity as a function of the center-to-center distance between
the active cylinder and the confinement for R = 10r. The analytical and numerical solutions match
perfectly. The translational velocities at d1 = 0 and d1 = R − r are both 0, as dictated by symmetry
and the no-slip boundary conditions, respectively. The active cylinder translates the fastest when
d1 ≈ 8r, in which case the gap between the active cylinder and the confinement is approximately
the radius of the active cylinder. Interestingly, the translational velocity increases almost linearly for
0 � d1 � 6r. This means that the orbital angular velocity of the active cylinder (U1/d1) is almost
constant when d1 � 6r. In other words, if more than one of the active cylinders is in the dk � 6r
region and not interacting hydrodynamically with each other, the relative positions between each
active cylinder will remain the same.

The numerical flow fields are shown in Fig. 3 with increasing eccentricity resulting from the
position of the active cylinder (d1/r = 2.5, 5, 7.5). When the eccentricity is high, we reproduce
the classical counter-rotating secondary recirculation zone inside the confinement. The existence of
the secondary recirculation zone, as will be shown in the following sections, strongly affects the
dynamics of the cylinder pair.
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FIG. 2. Translational velocity of the active cylinder as a function of the center position, scaled by the
characteristic speed and length, respectively. Numerical results are shown in blue circles, and analytical
solutions are shown in the red curve. R = 10r. Insets denote the concentric configuration (d1 = 0) and the
nonconcentric configuration (d1 > 0).

Next we investigate the long-term dynamics of an active cylinder pair inside the confinement.
Specifically, consider two active cylinders suspended inside a stationary confining circular cylinder
of radius R = 10r with the same torque per unit length Maez. No analytical solution seems feasible
for this case and we adopt the numerical route.

Let xk (t ) denote the kth active cylinder’s center position at time t and dk (t ) = |xk (t )|. Figure 4
shows a gallery of four qualitatively different periodic trajectories with different initial positions.

We start by putting cylinder 1 halfway between the center and the boundary of the confinement
and cylinder 2 at the center of the confinement [x1(0) = 5.0rex, x2(0) = 0]. Both cylinders orbit
counterclockwise when viewed in the laboratory frame, and the center of each cylinder traces a
cycloid-type curve around the origin [Fig. 4(a)]. The cycloid-type curves collapse into simple curves
when viewed in the corotating frame x∗y∗, implying that the motions of the cylinders are periodic
[Fig. 4(e)]. The corotating frame is defined in the same way as in our analytical method to eliminate
cylinder 1′s azimuthal movement. The center of cylinder 2 traces a slightly curved trajectory
approximately aligned with the y∗ axis. The discontinuity of cylinder 2′s trajectory, denoted by

FIG. 3. Flow fields in the laboratory frame for a single active cylinder inside the confining cylinder (R/r =
10) at different positions. From left to right: d1/r = 2.5, 5, and 7.5, respectively. The streamlines are shown on
top of the flow field, which is color-coded by the magnitude of the fluid velocity.
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FIG. 4. Characteristic trajectories of cylinder pairs with different initial positions: (a)–(d) center trajectories
in the laboratory frame; (e)–(h) center trajectories corotating frame such that cylinder 1 is always on the
positive x∗ axis; (i)–(l) distance to the center of confinement (blue/red) and the center-to-center distance
within the cylinder pair (black) as functions of time. In all panels, blue and red curves are the corresponding
curves for cylinder 1 and 2, respectively. The arrows in panels (a)–(h) denote the translational velocity
at the initial positions. Four different hydrodynamic bound states are shown in columns. Waltz: x1(0) =
5rex, x2(0) = 0; Orbit: x1(0) = 7.5rex, x2(0) = 0; weak Waltz: x1(0) = 7.5rex, x2(0) = −5.5rex; weak Orbit:
x1(0) = 7.5rex, x2(0) = −8.5rex .

the red dashed line in the corotating frame, happens in the degenerate case where cylinder 1 is
at the center of the confinement. The periodic nature of the motions is also reflected when we
plot the distances between the active cylinders and the center of the confinement as functions of
time [Fig. 4(i)]. As time increases, d1(t ) first decreases from 5r to 0 as cylinder 1 gradually moves
towards the origin while d2(t ) increases from 0 to 5r. At about t = 103µr2/Ma, d1(t ) = 0 as cylinder
1 reaches the origin and d2(t ) = 5r. At this point, the two cylinders essentially exchanged their
positions compared to their initial positions, albeit with a rotated viewing angle. As a result, the
functions d1(t ) and d2(t ) are identical up to a half-period phase lag. That is, d1(t ) = d2(t + T/2)
for all t , where T is the period of the motion. We refer to this type of periodic motion with
exchangeability between cylinders as the Waltz bound state, motivated by the dancing motion of
Volvox [24].

Different types of long-term dynamics can be obtained by varying the initial positions of the
cylinder pair. For example, if we keep the initial position of cylinder 2 to be at the origin and move
cylinder 1 further away such that x1(0) = 7.5rex, cylinder 1 will always orbit around the origin
at a large yet approximately constant distance, whereas cylinder 2 is “trapped” to move in small
circles close to the origin [Fig. 4(b)]. Again, the nature of the motion is best shown in the corotating
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FIG. 5. Parameter spaces showing distinct hydrodynamic bound states using the full hydrodynamic inter-
action model (a) and the rotlet model (b). (shaded) Green: (weak) Waltz, (shaded) Yellow: (weak) Orbit, Gray:
Symmetry, Dark Blue: Physically inaccessible. Examples shown in Fig. 4 are denoted by black circles.

frame: cylinder 2 orbits in a small circle biased towards cylinder 1, while cylinder 1 barely moves
[Fig. 4(f)]. During the period, d1(t ) varies between 7.5r and 8.0r, while d2(t ) varies between 0
and 2.3r. The center-to-center distance of the cylinder pair is also larger compared to the first case,
where 5.7r < d12(t ) < 7.5r [Fig. 4(j)]. Unlike the Waltz bound state, the exchangeability within
the cylinder pair is lost as d1(t ) > d2(t ) for all t , and the two cylinders seem to orbit with their own
radius. We refer to this type of period motion as the Orbit bound state.

Another two transitions in states happen as we keep increasing the center-to-center distance
within the cylinder pair. Specifically, for x1(0) = 7.5rex and x2(0) = −5.5rex, no cylinder would
be trapped close to the origin, and the respective distances to the confinement center are similar for
the two cylinders [Fig. 4(c)]. Interestingly, the center of cylinder 2 in the corotating frame traces
a crescent shape that encloses the trajectory of cylinder 1 if mirrored about the y∗ axis [Fig. 4(g)].
This is a state reminiscent of the Waltz bound state, as d1(t ) and d2(t ) are identical up to a half-
period phase lag [Fig. 4(k)]. The larger center-to-center distance d12 leads to weaker hydrodynamic
interactions within the cylinder pair and the period is much longer compared to Waltz. We refer to
this state as the weak Waltz bound state. On the other hand, increasing d12(0) further would reveal a
state similar to the Orbit bound state [Figs. 4(d), 4(h), and 4(l)]. Specifically, if x1(0) = 7.5rex and
x2(0) = −8.5rex, d1(t ) oscillates between 4.9r and 7.5r, while d2(t ) is almost constant at 8.5r. d12

in this case oscillates between 13.4r and 16r. Unlike the typical Orbit bound state, no cylinder is
trapped close to the origin. We refer to this state as weak Orbit bound state.

We then conduct a systematic study of the initial positions of both active cylinders xk (0). Due
to rotational symmetry, we set x1(0) = d1(0)ex, where 0 � d1(0) < 9r without loss of generality.
Additionally, numerical evidence (not shown here) suggests that no matter where x2(0) is, there is
always a time to such that the origin, x1(to), and x2(to) form a straight line for R = 10r. This result
greatly reduces the parameter space we need to explore, as we only need to consider the cases where
x2(0) is on the x axis as well.

Figure 5(a) shows the entire parameter space when x1(0) and x2(0) are varied along the x axis. In
particular, the horizontal axis is the center-to-center distance within the cylinder pair at t = 0, which
measures the strength of hydrodynamic interaction between the active cylinders; the vertical axis is
the distance of the midposition of the two active cylinders to the origin at t = 0, which measures
the eccentricity of the cylinder pair. The upper-right region of the parameter space is physically
inaccessible as at least one active cylinder will be outside the circular confinement.

The cylinder pair is in the equilibrium state by symmetry if |x1(0) + x2(0)| = 0. In this case,
both active cylinders will keep moving in the azimuthal direction of the confining cylinder at the
same orbital angular velocity. Aside from the symmetric case, there are four distinct regions over
the entire parameter space corresponding to the four hydrodynamic bound states discussed earlier
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in this section. Specifically, the cylinder pair is in the Waltz bound state if both the initial separation
distance |x1(0) − x2(0)| and the eccentricity are small. As the separation distance increases, the
cylinder pair falls in the Orbit, weak Waltz, and weak Orbit bound states in succession. For a given
initial separation distance, the bound state tends to transition to the next bound state when the
eccentricity increases.

By way of comparison with rotlet models, we adopt the model in Tallapragada and Sudarsanam
[28] that modeled each microroller as a rotlet and present the parameter space in Fig. 5(b). While
the diagrams are largely consistent, our simulation reveals a new hydrodynamic bound state (weak
Orbit) that could not be captured using rotlet approximation. This makes sense, as the weak Orbit
state is only observable when the active cylinder is very close to the bounding surface, in which case
the rotlet approximation breaks down.

IV. MECHANISMS OF THE MULTIPLE HYDRODYNAMIC BOUND STATES

The motion of each cylinder depends on two factors: (1) The self-induced velocity resulted from
the active torque of its own, and (2) The pair-induced velocity resulted from the hydrodynamic
interaction within the active cylinder pair. While the self-induced velocity is determined directly by
the position of the active cylinder inside the confinement (Fig. 2), the pair-induced velocity depends
both on the distance within the pair (d12) and the positions of the active cylinder with respect to
the confinement. In the limiting case where the cylinder pair eccentricity is absent [x1(0) + x2(0) =
0], the system possesses rotational symmetry by construction. Both cylinders will translate in the
azimuthal direction of the confinement at the same orbital angular velocity and the pair eccentricity
will remain 0 for all t , leading to the Symmetry state shown in Fig. 5. In the following we focus
on analyzing the four examples shown in Fig. 4 to deduce the mechanisms of these hydrodynamic
bound states.

In example 1, the small eccentricity for each active cylinder and the small center-to-center
distance within the pair together implies that the self-induced velocity is dominated by the pair-
induced velocity. As a result, the cylinder pair rotates about its center similar to that of the symmetry
state, while the pair center slowly orbits around the center of the confinement due to the nonzero
eccentricity, resulting in the Waltz bound state.

In example 2, cylinder 2 is at the center of the secondary recirculation zone generated by the
rotation of cylinder 1, at which location both the self- and pair-induced velocities are close to zero.
Additionally, the flow generated by cylinder 2 advects cylinder 1 in the same direction as its self-
induced velocity, reinforcing the azimuthal movement of cylinder 1. Cylinder 2 is thus trapped close
to the origin while cylinder 1 orbits in the azimuthal direction, leading to the Orbit bound state.

The analysis of the mechanisms is more complicated for larger center-to-center distances, as
the pair-induced velocities no longer dominate the self-induced velocities and the cylinders are in
the secondary recirculation zones generated by their counterparts. To facilitate our analysis, we
decompose the velocities generated by the rotation of cylinder 1 into the azimuthal and radial
components. These components are shown in the corotating frame as we are mostly focused on
the relative motions of the pair (Fig. 6). We note that the radial components of the self-induced
velocity as well as those of the pair-induced velocity are both zero if the centers of the cylinders and
the origin form a straight line. We look at the azimuthal component first.

In example 3, the pair-induced azimuthal velocity on cylinder 1 is much lower than its self-
induced counterpart because of the wall-screening effect (3.8 × 10−4Ma/µr vs 5.3 × 10−3Ma/µr),
whereas those on cylinder 2 are comparable to each other (1.8 × 10−3Ma/µr vs 4.0 × 10−3Ma/µr).
Therefore, even though the self-induced orbital angular velocity (ωk = Uk/dk) of cylinder 2 is
slightly higher than that of cylinder 1, as evidenced by the tapered slope of the curve in Fig. 2,
the pair-induced velocity in the azimuthal direction advects cylinder 2 clockwise to the second
quadrant of the corotating frame [Fig. 6(a)]. In the second quadrant, the radial component of the
pair-induced velocity is positive, meaning that d2 will increase and catch up d1 [Fig. 6(b)]. On the
other hand, the flow generated by cylinder 2 in the second quadrant advects cylinder 1 in the negative
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FIG. 6. Mechanisms for the weak Waltz and the weak Orbit bound states. Panels show the azimuthal (a) and
radial (b) velocities generated by the active cylinder at 7.5rex . The other cylinder’s positions leading to the weak
Waltz and weak Orbit bound states are denoted by the faint circles. The self- and pair-induced velocities are
denoted by black and gray arrows, respectively.

radial direction, which initiates the weak Waltz bound state where the two cylinders will eventually
exchange their relative positions.

In example 4, both cylinders are close to the confining boundary with a large center-to-center
distance within the pair; thus the self-induced velocities dominate the pair-induced velocities for
each cylinder. The decreasing slope in Fig. 2 for large dk shows that the self-induced orbital velocity
for cylinder 2 (at d2 = 8.5r) is slower than that for cylinder 1 (at d1 = 7.5r). Therefore cylinder 2
will move into the second quadrant of the corotating frame, and d2 will increase even though it is
already greater than d1 at the beginning. Therefore the two cylinders will not be exchangeable and
are in the weak Orbit bound state.

V. CONCLUSIONS AND DISCUSSION

In this paper we systematically studied the hydrodynamic bound states of an active cylinder pair
rotating inside cylindrical confinement. We focused on the case where the two active cylinders are
identical both in terms of geometry and active torque. We found that the active cylinder pair can fall
into four distinct nontrivial hydrodynamic bound states, termed Waltz, Orbit, weak Waltz, and weak
Orbit depending on their initial positions, where Waltz and weak Waltz are the states where the
motions of the two active cylinders are exchangeable up to a half-period shift in phase, i.e., d1(t ) =
d2(t + T/2). The distinction between Waltz and weak Waltz is based on the parameter space, as the
two states are separated by the Orbit state, and similarly for Orbit and weak Orbit, where the weak
Waltz state separates the two states in the parameter space. The mechanisms of these hydrodynamic
bound states can be explained by the competing effects of the self-induced velocity generated by
each active cylinder and the confinement and the pair-induced velocity generated within the active
cylinder pair.

We note that the Waltz bound state is reminiscent of the Leapfrog motion observed in Delmotte
[29] in which the microrollers are placed close to a flat wall. In fact, the Leapfrog motion is the
only periodic state observed in [29] when the microrollers are neurally buoyant—our work shows
that having nonplanar confinement can lead to various periodic states, highlighting the effects of
complex geometry on active matters. Some recent work has been investigating the effect of complex
geometry on run-and-tumble behaviors [37–40]. Our results suggest that bacteria swimming in
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cylindrical confinement may exhibit different modes, as run-and-tumble is essentially the result
of rotating (and counter-rotating) a few semirigid flagella.

We focused on the radius ratio R/r = 10 in this manuscript. While this large ratio may suggest
a possible separation of scales and validate the use of far-field approximations such as the rotlet
model, we showed that the rotlet model cannot capture the whole picture, particularly when the
active cylinder is close to the confining boundary. On the other hand, qualitatively similar results
are obtained with a smaller radius ratio (R/r = 5) when the active cylinders are placed along
the confinement diameter. It is worth pointing out that smaller radius ratios could lead to more
interesting pair dynamics when the cylinders are not placed along the confinement diameter. In fact,
we observed another hydrodynamic bound state in which one active cylinder is “locked behind”
the other cylinder at an approximately constant distance (see supplemental video in Ref. [32]).
Systematic studies of this asymmetric effect with different radius ratios require a much bigger
parameter space and are beyond the scope of this paper.

Our analytical result of a single active cylinder moving inside the circular confinement was
built on the work of Wakiya [36] that was designed for pinned-cylinder cases. We note that newer
approaches using complex methods have been developed and adapted to cylinders with prescribed
translational and rotational motions, as shown in Finn and Cox [41], Finn et al. [42].

Many extensions can be applied to this work. For example, one can introduce asymmetry within
the active cylinder pair, either in terms of the shape or the driving mechanism. This asymmetry
could presumably lead to more interesting motions. Furthermore, one can also alter the shape of
the confinement and explore the possibility of delivering a cargo cylinder from one compartment to
another by controlling the torque of the active rotating cylinder. It will also be interesting to see how
different bound states affect the mixing of scalar fields [41–43]. On the other hand, fast numerical
methods such as the fast multipole method [44,45] can be readily applied to the boundary-integral
method we adopted here, allowing the possibility to study the interactions of many active cylinders.
Extending the work to three dimensions would also allow us to study more realistic cases with more
interesting geometries, such as helical-shaped filaments.
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