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Navigation of a three-link microswimmer via deep reinforcement learning
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Motile microorganisms develop effective swimming gaits to adapt to complex biolog-
ical environments. Translating this adaptability to smart microrobots presents significant
challenges in motion planning and stroke design. In this work, we explore the use of
reinforcement learning (RL) to develop stroke patterns for targeted navigation in a three-
link swimmer model at low Reynolds numbers. Specifically, we design two RL-based
strategies: one focusing on maximizing velocity (velocity-focused strategy) and another
balancing velocity with energy consumption (energy-aware strategy). Our results demon-
strate how the use of different reward functions influences the resulting stroke patterns
developed via RL, which are compared with those obtained from traditional optimiza-
tion methods. Furthermore, we showcase the capability of the RL-powered swimmer
in adapting its stroke patterns to perform different navigation tasks, including tracing
complex trajectories and pursuing moving targets. Taken together, this work highlights the
potential of reinforcement learning as a versatile tool for designing efficient and adaptive
microswimmers capable of sophisticated maneuvers in complex environments.

DOI: 10.1103/9msg-hgqn

I. INTRODUCTION

Locomotion at low Reynolds numbers is a fascinating subject, as the interaction between
microorganisms and their environment generates propulsion in ways fundamentally different from
macroscopic motion [1–3]. Microorganisms navigate their viscous environments through special-
ized mechanisms, such as the undulating flagella of sperm cells [4], the rotating helical flagella
of bacteria [5], and the coordinated ciliary movements of paramecia [6]. Inspired by these natural
strategies, various microswimmers have been designed for applications such as drug delivery [7–9],
self-assembly [10,11], and targeted therapy [12]. A core challenge in the design of microswimmers
is the development of effective stroke patterns or motion planning: What body deformations can
achieve the desired locomotion? Unlike microorganisms, which can adapt their gaits based on
environmental cues and functional needs, most current microswimmers possess a single mode
of motion and can only operate in simple, controlled environments [7,13–17]. Addressing this
challenge requires not only an understanding of the biomechanics of microbial movement but also
insights into how their detailed structures and sensory systems coordinate to achieve their goals,
making the modeling process inherently complex [18–20].

Model-free reinforcement learning (RL) offers a promising approach for stroke design and mo-
tion planning in microswimmers. Recent computational and experimental studies have demonstrated
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the potential of RL in studying biophysical problems at low Reynolds numbers and designing
intelligent microswimmers [21–26]. Within the RL framework, microswimmers learn from experi-
ence through trial and error without relying on physical knowledge of the system. This allows for
the discovery of novel locomotion strategies that traditional modeling approaches may not easily
uncover. For example, RL has enabled microswimmers to achieve targeted navigation, adapting
their movements in response to complex environmental cues and disturbances, ensuring robust
performance even in dynamic and unpredictable fluid environments [24,27–32]. Studies have shown
that microswimmers can optimize their swimming strategies to achieve specific goals, such as
maximizing speed or efficiency, by adjusting their stroke patterns accordingly [24–26]. Additionally,
RL has been successfully applied to scenarios involving multiple microswimmers, facilitating
coordinated behaviors such as pursuit-evasion dynamics and collective navigation, which are critical
for applications like targeted drug delivery and environmental sensing [25,33]. These advancements
demonstrate how reinforcement learning can effectively address the challenges associated with
microswimmer design, offering a powerful tool for developing efficient and intelligent microrobots
capable of performing sophisticated tasks in complex biological environments [30,34,35].

In this work, we consider a three-link swimmer, one of the simplest microswimmer models
capable of generating propulsion at low Reynolds numbers. We utilize RL to explore the de-
velopment of stroke patterns for targeted navigation. We design two strategies—one focusing
on maximizing velocity (velocity-focused strategy) and another balancing velocity with energy
consumption (energy-aware strategy). We examine the stroke patterns developed through RL based
on different reward functions. Our results underscore the effectiveness and versatility of RL in
developing stroke patterns to meet various performance goals, demonstrating the potential for RL
as a tool to design locomotory gaits of microswimmers. We also showcase the capability of the
RL-powered microswimmer in performing complex navigation tasks in scenarios relevant to its
potential biomedical applications.

This paper is structured as follows. In Sec. II, we introduce the three-link swimmer model,
detailing its degrees of freedom and its dynamics at low Reynolds numbers. Section III describes
the RL framework we employed, including the design of the two strategies: the velocity-focused
strategy and the energy-aware strategy. We outline the neural network architecture and the reward
functions tailored for each strategy. In Sec. IV, we present the results of our simulations, analyzing
the swimmer’s performance under both strategies. We compare the stroke patterns developed
through RL with those from previous studies, highlighting similarities and differences. Additionally,
we demonstrate the RL framework’s capability to develop complex stroke patterns for tracing a
star-shaped trajectory and navigating toward moving targets. We conclude this work with remarks
on its limitations in Sec. V.

II. MODEL OF A THREE-LINK SWIMMER

The three-link swimmer possesses the minimal degrees of freedom required for self-propulsion
in a low-Reynolds-number environment [36]. This system consists of three identical rigid links,
each with a radius a and a length l = L/3, where L represents the total length of the swimmer [see
Fig. 1(a)]. The locomotion of the swimmer is constrained to two dimensions, described using the
Cartesian coordinates (e1, e2). The left end of each link is denoted by xi = (xi, yi ), and its orientation
by ti. The angle between ti and e1 is represented by θi. The swimmer’s hinges allow for free rotation,
with the angles between adjacent links denoted as α1 and α2. By actuating these angles, the links
interact with the surrounding fluid, resulting in net propulsion. To avoid close proximity, the angles
α1 and α2 are restricted to the range [−2π/3, 2π/3].

The position of any point on link i is denoted by Xi = xi + sti, where s represents the distance
along the link from its left end. The local velocity at Xi is given by

ui = ẋi + sθ̇ini, (1)
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(a)

(b)

(c)

FIG. 1. (a) Model of three-link swimmer. It consists of three rigid links of equal length, which are
connected by two hinges, allowing rotation to adjust the relative angles αi (i = 1, 2). The swimmer’s geometric
centroid, denoted xc, serves as the reference point for its motion. (b) Three basic stroke patterns of the three-link
swimmer. Left: stroke patterns in phase space; right: corresponding trajectories of the geometric centroid in
physical space. The initial configurations for these movements are shown in the left panel. (c) Framework of
model-free reinforcement learning.

where ni represents the unit vector normal to link i. Based on the resistive force theory, the local
hydrodynamic force is proportional to the local velocity [37]. Consequently, the local force is
calculated as follows:

fi = −(C‖titi + C⊥nini ) · ui, (2)

where C‖ = 2πμ/[ln(L/a) − 1/2] and C⊥ = 4πμ/[ln(L/a) + 1/2] are the drag coefficients [37],
and μ is the dynamic viscosity of the fluid. Integrating along link i, the total force and hydrodynamic
torque are

Fi =
∫ l

0
fi ds, Mi =

∫ l

0
Xi × fids. (3)

For low-Reynolds-number locomotion, the total hydrodynamic force and torque on the swimmer
should vanish, namely

3∑
i=1

Fi = 0,

3∑
i=1

Mi = 0. (4)

Moreover, the motion of the swimmer has kinematic constraints (here, i = 1, 2):

xi+1 − xi = lti, θi+1 − θi = αi. (5)

In presenting our results, we scale all lengths by the total length of the swimmer, L. We assume
a characteristic time scale, T0, which corresponds to the actuation rate of the angle between
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neighboring links. The associated force scale is defined as C⊥L2/T0. As a result, the dimensionless
quantities are defined as xi = Lxi, α̇ j = T0α̇ j, γ = C‖/C⊥, where i = 1, 2, 3 and j = 1, 2. In this
study, we consider a slender swimmer (a � L) with γ = 1/2. To simplify the notations, we omit
the overbars hereafter and refer only to dimensionless quantities. Combining Eqs. (4) and (5), the
swimmer’s motion is described by a system of linear equations:

H (X ,Y ,�)

⎛
⎝Ẋ

Ẏ
�̇

⎞
⎠ = q, (6)

where X = [x1, x2, x3]�,Y = [y1, y2, y3]�,� = [θ1, θ2, θ3]�, while (Ẋ , Ẏ , �̇) are their derivative
with respect to time t . The vector q is the function of the actuation rates of the angle between
neighboring links α̇1, α̇2. See Supplemental Material [38] for the components of H and q.

All instantaneous configurations of the swimmer can be represented by a point in the two-
dimensional (α1, α2) phase space. Thus, all periodic stroke patterns of the swimmer can be depicted
as a single closed curve in this space. In Fig. 1(b), we illustrate three stroke patterns in the phase
space (left panel) along with the corresponding trajectories of the swimmer’s geometric centroid
in the physical space (right panel). The classical Purcell’s stroke pattern is shown in gray lines. In
this pattern, only one arm moves at a time, maintaining symmetry with joint angles ranging from
−π/3 to π/3. This symmetric stroke results in the swimmer moving straight along the horizontal
direction. We modify Purcell’s stroke pattern by allowing the joint angles to vary asymmetrically
between −π/2 and π/6, as illustrated by the light gray lines. This asymmetry causes the swimmer
to move along a clockwise circular trajectory. Similarly, if the joint angles vary between −π/6 and
π/2, shown by the black lines, the swimmer moves along a counterclockwise circular path.

III. TARGETED NAVIGATION VIA REINFORCEMENT LEARNING

A. RL framework for targeted navigation

We use an RL framework to train the swimmer in swimming parallel along a certain target direc-
tion θT [Fig. 1(c)]. The state of the system, S ∈ (x1, θ1, θ2, θ3), is specified by the coordinate of the
swimmer’s one end x1 and link orientations θ1, θ2, θ3. The observation, O ∈ (cos θd , sin θd , α1, α2),
is extracted from the state, where θd = θ2 − θT is the difference between the second link’s ori-
entation and the target direction. The term (cos θd , sin θd ) is introduced to ensure continuity in
the orientation space, as each component remains within [−1, 1]. This ensures that our data will
not overflow, thereby preventing the continuity of the values from being disrupted when taking θd

modulo 2π . The agent in the RL framework utilizes an Actor-Critic neural network architecture
to decide the swimmer’s actions based on the observations. Specifically, for each action step,
the swimmer senses its observation O and, through the Actor network, determines the action
A ∈ (α̇1, α̇2) by calculating the angular velocities for rotating its two hinges.

We design different reward functions to evaluate the success of the swimmer’s actions in
achieving targeted navigation. Two types of objective criteria are established for control. The first
objective focuses on velocity toward the target direction, which we refer to as the VFS. The criterion
here is the distance traveled by the swimmer along the target direction within a specific time period.
Specifically, the reward function for the VFS is defined as follows:

Rk = b
(
xck+1 − xck

) · p, (7)

where k represents the ordinal number of the training step, and xck denotes the geometric centroid of
the swimmer at the kth training step. The targeted orientation is denoted as p = cos θT e1 + sin θT e2.
The parameter b is a positive scaling factor introduced to adjust the magnitude of the reward signal.
A larger value of b increases the reward’s magnitude, which can accelerate the convergence rate of
training by encouraging larger updates during gradient descent. However, if b is set too high, it may
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lead to numerical instability due to excessively large gradient steps. Therefore, b should be chosen
carefully to balance the trade-off between faster convergence and stable learning dynamics.

The second objective is to achieve an EAS, which aims to realize targeted navigation while
penalizing energy consumption. We consider the total rate of work done by the swimmer on the
fluid:

� =
3∑

i=1

�i, (8)

where �i refers to the rate of work done by the ith link and can be computed as follows:

�i =
∫ 1/3

0
−fi · ui ds, (9)

where fi and ui are given by Eqs. (1) and (2).
In the actual training process, we calculate the work done by the swimmer during the kth training

step, defining it as

Wk =
∫ tk+1

tk

� dt, (10)

where tk denotes the initial time of the kth training step. By incorporating an energy penalty, we
design the reward function for the EAS as

Rk = b
(
xck+1 − xck

) · p − cWk, (11)

where c is a positive weight introduced to penalize mechanical power consumption during each
action step. A larger c increases the emphasis on reducing energy expenditure, which can lead to
higher swimming efficiency. However, if c is set too high, the swimmer may prioritize conserving
energy over progressing toward the target, resulting in decreased accuracy in navigating along the
desired direction or even failure to reach the target.

B. Training process

We employ the proximal policy optimization (PPO) algorithm to train the swimmer to navigate
along a specified target direction, θT . The algorithm is adapted from [22,24] (see Supplemental
Material [38] for more details). Without loss of generality, we set the target direction to be parallel
to the x-direction, corresponding to a target angle of θT = 0. To fully explore the observation
space O, (θ1, θ2, θ3) in the initial swimmer state S are randomized at the beginning of each
episode. The training process is divided into NE episodes, each consisting of Ns action steps. A
sufficiently large number of episodes and action steps is necessary to ensure the convergence of the
training results and smoothness of the swimmer’s movements. In the reward functions, we set the
coefficients to b = 6 and c = 3. Our numerical experiments show that choosing a value of b < 6
increases the convergence time, though the training results remain similar to when b = 6. However,
increasing b beyond 6 may cause numerical instability due to larger gradient steps, resulting in
deviations from the target direction during navigation. The coefficient c is a positive weight that
penalizes mechanical power consumption, which may be expected to reduce performance in terms
of displacement toward the target direction or the ability to reorient toward it. When c exceeds 3, we
observe a significant asymmetry in the stroke patterns, rendering the navigation strategy ineffective.
This occurs because the swimmer prioritizes energy conservation over advancing toward the target,
leading to a decrease in navigation accuracy (refer to the Supplemental Material [38] for more
details on the effects of these parameters).

In Fig. 2, we compare the progression of rewards versus the number of training episodes for both
the VFS and the EAS reward functions. Here, the reward R = ∑Ns

k=1 Rk denotes the cumulative
reward obtained over all action steps within a single episode. It can be observed that while both

064103-5



LAI, HEYDARI, PAK, AND MAN

FIG. 2. Convergence of reward functions for the velocity-focused strategy (VFS, blue line) and the energy-
aware strategy (EAS, purple line). Each training episode contains a fixed number of action steps Ns = 200. The
reward R = ∑Ns

k=1 Rk denotes the cumulative reward obtained over all action steps within a single episode.

training processes eventually converge, the EAS requires more episodes to do so. Specifically, the
VFS rewards converge around 15 000 episodes, whereas the EAS rewards take approximately 40 000
episodes to converge. This slower convergence in the EAS can be attributed to the added complexity
of its reward function, which incorporates not only the displacement in the target direction but
also an energy penalty. We set a sufficiently large number of episodes (NE = 100 000) to ensure
convergence of the reward function while maintaining a manageable training time. Similarly, a
sufficiently large number of action steps per episode (Ns = 200) is set to yield a high success rate
of navigation while keeping training time minimal (see Supplemental Material [38] for more details
on the effect of Ns on the success rate.)

IV. RESULTS AND DISCUSSION

A. Stroke patterns and motion dynamics

In Fig. 3, we illustrate the swimming trajectories based on the VFS and EAS. The initial con-
figuration of the swimmer is set as x1 = (1, 0) and θ1 = θ2 = θ3 = π/3. The swimmer, following
both strategies, is allowed to move for 1500 steps. The trajectories of the stroke patterns in the
phase plane are shown in Figs. 3(a) and 3(c), while the corresponding trajectories of the geometric
centroid of the swimmer in the physical space are shown in Figs. 3(b) and 3(d).

We observe that in both cases, the swimmer successfully achieves targeted navigation and swims
horizontally. The trajectories can be divided into two stages: steering and translation. The steering
is the process of the swimmer adjusting its direction, while the translation reflects the swimmer
moving steadily along a given direction. In the phase space shown in Figs. 3(a) and 3(c), the
phase point circles clockwise, with the swirling center gradually approaching the origin of the
phase plane. The stroke pattern eventually converges to a symmetric closed loop, indicating straight
locomotion. In the physical space shown in Figs. 3(b) and 3(d), the swimmer gradually turns
clockwise and ultimately swims horizontally. The transient process represents the steering stage,
while the converged straight motion represents the translation stage. The converged stroke patterns
of VFS and EAS are visibly different. The VFS trajectory in the phase space is more rectangular,
while the EAS trajectory is more rounded.

Since the position of the swimmer’s centroid oscillates during motion, we need to define an
averaged orientation to establish a criterion for convergence. Observing that one period of the
swimmer’s motion contains about 70 steps, we choose to smooth the trajectories by averaging
over this period. Specifically, for each step i (where i > 35), we calculate the average position by
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(a) (b)

(c) (d)

FIG. 3. Learning to swim along θT = 0 with VFS and EAS. (a),(c): Stroke patterns in the phase plane.
(b),(d): Trajectories of the geometric centroid and the smoothed path. The initial state is set as x1 = (1, 0),
θ1 = θ2 = θ3 = π/3. The insets in (b),(d) display the evolution of the swimmer’s averaged orientation, θs, over
time. In (b),(d), the black lines represent the smoothed path of the swimmer’s motion, with the black dashed
line used to distinguish the steering and translation stages. The blue lines indicate the VFS results, while the
purple lines show the EAS results.

considering the positions from 35 steps before to 35 steps after step i. This means we average the
positions from step i − 35 to step i + 35, effectively smoothing over one full period of motion. The
smoothed path is shown as the black solid lines in Figs. 3(b) and 3(d). Next, we calculate the slope
angle θs of the smoothed path to determine the averaged orientation of the swimmer. To do this,
we compute the finite differences between consecutive smoothed positions to obtain the local slope
at each point. By analyzing θs, we can assess how effectively the swimmer is aligning its motion
with the desired target direction, thereby establishing a criterion for convergence. In the insets of
Figs. 3(b) and 3(d), we show the convergence of the averaged orientation, θs. In addition, we use
θs to precisely distinguish between the steering and translation stages. If |θs| > 2.5◦, the trajectory
segment is classified as steering; otherwise, it is classified as translation. Based on this classification,
we use a dashed line to separate the two stages.

B. Swimming speed and efficiency

Building upon the results that demonstrate both strategies effectively achieve targeted navigation,
we proceed to quantitatively distinguish the VFS and EAS. By calculating the swimming speed
along the target direction and the swimming efficiency during the steering and translation stages—
based on the smoothed motion—we quantify the differences between the two strategies.
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(a) (b)

FIG. 4. Velocity along the target direction (a) and swimming efficiency (b) over time. Velocity and
efficiency are calculated based on the smoothed paths. In each case, straight initial configurations with θ2 = 0
(solid line), π/3 (dash-dotted line), and π/2 (dashed line) are considered.

In Fig. 4(a), we demonstrate that the translation stage is independent of the initial configurations.
We simulate the dynamics resulting from the VFS and EAS with initial configurations θ2 = θ0 =
0, π/3, π/2 and α1 = α2 = 0. In both VFS and EAS, the horizontal speed, denoted v, converges to
the same value. For the VFS, the horizontal speed converges to approximately 0.01284, while for
the EAS, the steady speed is slightly slower at about 0.01176.

To evaluate the swimming efficiency, we adopt a definition by Lighthill [37] and Purcell [39]. At
a given time, we calculate the rate of work done by the swimmer on the fluid, denoted as �(t ), using
Eq. (8). As a reference motion, we consider towing the swimmer in its straightened configuration
(α1 = α2 = 0, θ2 = 0) along the horizontal direction at velocity v(t ). The rate of work for the
towing problem is calculated as

�0 = γ v2. (12)

The swimming efficiency, ε, is then defined as the ratio of the rates of work:

ε = �0

�
. (13)

By calculating the swimming efficiency, we observe that in both VFS and EAS, the efficiency
criterion ε converges to consistent values despite different initial configurations. According to
Fig. 4(b), for the VFS, the efficiency converges to approximately 0.854%, while for the EAS, a
higher efficiency of about 1.077% is achieved. These results demonstrate that, regardless of the
initial configuration, both strategies converge to their respective steady efficiency levels.

During the translation stage, the swimmer begins to move steadily by repeating the same stroke
pattern. In Figs. 5(a) and 5(b), we plot the converged stroke patterns for both VFS and EAS in
the phase space using solid lines. Tam et al. [40] investigated the optimal stroke patterns for the
three-link swimmer, focusing on two cases: velocity optimal (VO) and efficiency optimal (EO).
They numerically optimized the periodic functions of α1 and α2 using gradient search. In Figs. 5(a)
and 5(b), we reproduce the stroke patterns of VO and EO in [40] using dashed lines. We compare
these optimal stroke patterns with those obtained through our reinforcement learning approach.
It is intriguing to observe that, although the RL-generated stroke patterns are not identical to the
optimized patterns from [40], they exhibit similar features. For instance, the stroke pattern from the
VFS shares similarities with the VO pattern, being more rectangular in the phase space. Meanwhile,
the stroke pattern from the EAS resembles the EO pattern, appearing more rounded.

In Figs. 5(c) and 5(d), we further quantitatively compare the results from our RL strategies with
those from [40] by calculating the average velocity along the target direction 〈v〉t and the swimming
efficiency over one stroke cycle 〈ε〉t . Specifically, we consider four cases: the velocity-optimal (VO)
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(a) (b) (c)

(d)

FIG. 5. Comparison between the models from optimizations and the strategies obtained through RL.
(a): Stroke patterns with VO (velocity optimal) and VFS (velocity-focused strategy). (b): Stroke patterns with
EO (efficiency optimal) and EAS (energy-aware strategy). (c): Comparison of average velocity along the target
direction for all four strategies. (d): Comparison of average swimming efficiency for all four strategies. The
results of VO and EO are reproduced from Ref. [40].

and the efficiency-optimal (EO) stroke patterns from optimizations, the velocity-focused strategy
(VFS), and the energy-aware strategy (EAS) from RL.

For the average velocity, the VO achieves the highest value, followed by the VFS, EAS, and EO.
Quantitatively, the VFS achieves over 80% of the average velocity of the VO, indicating that the
RL-generated VFS closely approximates the velocity performance of the optimal stroke pattern. In
terms of swimming efficiency, the EO from optimization attains the highest efficiency, followed by
the EAS, VFS, and VO. Notably, the EAS again captures over 80% of the efficiency achieved by
the EO, which demonstrates that the RL-generated EAS effectively balances energy consumption
while maintaining reasonable propulsion.

These results highlight that, although the stroke patterns obtained through RL are not identical
to the optimal ones, they exhibit similar features and achieve comparable performance levels. This
underscores the capability of RL in developing effective stroke patterns that align with specific
objectives, such as maximizing velocity or efficiency, without explicitly programming these optimal
solutions. Overall, the RL approach demonstrates a strong ability to capture key characteristics of
optimal swimming gaits identified by traditional optimization methods.

C. Complex navigation tasks

Finally, we showcase the swimmer’s capability to trace complex paths and navigate toward
moving targets. In Fig. 6, we task the swimmer with tracing a star-shaped trajectory. Notably,
the hydrodynamic calculations required to design the stroke patterns for such complex paths can
become intractable as the complexity increases. Here, rather than explicitly programming the
swimmer’s stroke patterns, we only select target points (xTi , i = 1, 2, . . . , 10) as landmarks and
require the swimmer to navigate using its own strategy. The target direction at time step k + 1
is given by θTk+1 = arg(xTi − xck ). Starting from the initial state x1 = (1, 0) with link orientations
θ1 = θ2 = θ3 = 0, the swimmer, equipped with the VFS model, is assigned the next target point xTi+1

once its centroid is within a certain threshold (set to 0.001 here) from xTi . The navigation strategy
enables the swimmer to adjust its swimming gaits to navigate several wide (e.g., around point 3) and
sharp angles (e.g., around point 4) in tracing the star-shaped trajectory (see Supplemental Movie 1
[38]).

Next, we demonstrate the RL-powered swimmer’s capability to navigate toward a dynamic target,
characterized by its position xT , orientation pT , and intrinsic speed vT . In addition, we consider
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FIG. 6. Three-link swimmer traces a star-shaped trajectory. The trajectory of the swimmer’s geometric
centroid is represented by blue lines. Initialized in a straight configuration with θ1 = θ2 = θ3 = 0, the swimmer
is provided with a sequence of target points (1–10), where it chases one target point (gray stars) at a time. The
black arrows indicate the intended direction of the swimmer’s movement.

scenarios where the target’s movement is influenced by random fluctuations due to Brownian
motion, characterized by a diffusivity D. This target undergoes purely translational diffusion in two
dimensions, described by independent Brownian motions in the x- and y-directions. Specifically,
each action step satisfies 〈δx2〉 = 〈δy2〉 = 2Dδt , where δt denotes the duration of an action step, and
δx and δy are the displacements in the x- and y-directions within one action step. This combination
of directed movement and random motion of the target introduces additional complexity to the
swimmer’s navigation task. We note that all these quantities—position, orientation, speed, and
diffusivity—are nondimensionalized using the characteristic length, time, and force scales defined
earlier in Sec. II.

In Fig. 7, we present three scenarios where the swimmer navigates toward moving targets with
different intrinsic speeds. The swimmer utilizes the VFS to adjust its stroke patterns based on
the current observed direction of the moving target relative to its own position. Navigation is

(a) (c)(b)

FIG. 7. Three-link swimmer (VFS, blue dots) navigates toward diffusing targets (gray stars) with different
speeds. (a): vT /vm = 0. (b): vT /vm = 0.5. (c): vT /vm = 1; vT is the target’s speed and vm is the maximum
speed achieved by the VFS. The trajectory of the swimmer’s geometric centroid is shown in blue lines, and the
trajectory of the target is shown in gray lines. The swimmer is initialized as a straight shape with θ1 = θ2 =
θ3 = 0, and the target is oriented at 30◦ relative to the horizontal axis. The diffusivity is set to D = 5 × 10−5.
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achieved by continuously sensing the target’s location and adapting its movements to minimize
the distance between the swimmer and the target. In the simulations, the swimmer’s initial state
is set as x1 = (1, 0) with link orientations θ1 = θ2 = θ3 = 0. The target starts from the initial
position xT = (1.5, 0.5) and has an initial orientation of 30◦ relative to the horizontal axis. The
diffusivity of the target is set to D = 5 × 10−5. We consider targets with three different intrinsic
speeds: vT /vm = 0, 0.5, and 1, where vm denotes the maximum speed achieved by the VFS. We
define capture as the event when the distance between the swimmer and the target becomes less
than a predefined threshold of 0.001. Once the swimmer is within this distance of the target, it is
considered to have successfully captured the target.

In Fig. 7(a), we present the scenario where the swimmer (represented by the blue dot) navigates
toward the target (gray star) undergoing pure Brownian motion (i.e., vT = 0). Despite the target’s
random motion, the swimmer effectively adjusts its motion based on the observed direction of the
target relative to its own position and navigates toward the moving target. We observe that the swim-
mer’s centroid follows a relatively smooth trajectory compared with the randomly fluctuating path
of the target. The swimmer eventually captures the moving target (see Supplemental Movie 2 [38]).
When the target has an intrinsic speed that is half that of the swimmer (i.e., vT = vm/2) in addition
to its random motion, the swimmer is still able to continuously adapt its stroke patterns to pursue
and successfully capture the moving target (see Supplemental Movie 3 [38]). In Fig. 7(c), we push
the limits further by examining the scenario where the moving target’s intrinsic speed is increased to
match that of the swimmer (i.e., vT = vm). Under this challenging condition, the swimmer is unable
to capture the target but is still able to closely follow its trajectory (see Supplemental Movie 4 [38]).
Taken together, these results demonstrate the capability of the RL-powered swimmer to navigate
toward a target moving at a significant fraction of its own speed.

V. CONCLUDING REMARKS

In this work, we presented a reinforcement learning (RL) approach to enable the navigation of a
three-link swimmer at low Reynolds numbers. While a prior study demonstrated limited locomotion
of a three-link swimmer with discrete action spaces [26], the deep RL-powered swimmer presented
here leverages continuous action spaces to learn complex stroke patterns for effective swimming
and navigation toward a target direction. We examined how different reward functions—one that
rewards only the swimmer’s velocity toward the target and another that also accounts for energy
consumption—lead to the development of distinct stroke patterns. We note that energetic cost has
been incorporated into the reward function in previous predator-prey contexts [25]. In contrast,
our work focuses on the propulsion performance of a widely studied three-link swimmer, enabling
direct benchmarking of RL-derived strategies against those obtained from prior optimization-based
approaches. With different reward functions, we observed that the RL-derived stroke patterns exhibit
qualitative features similar to the optimal solutions identified in previous optimization studies
[40]. Quantitatively, the strategies developed by RL are at least 80% as effective as the optimal
solutions in terms of both propulsion velocity and energetic efficiency. The performance gap may
be attributed to the fundamental difference in methodology: prior optimization-based approaches
typically impose a single-period optimization of stroke kinematics and explicitly search for an
optimal periodic gait under well-defined parameters, the RL framework applies no such constraints
a priori. Instead, the RL agent is free to discover any control strategy that achieves forward motion,
without assuming periodicity or a fixed stroke duration. While additional stroke constraints may
be incorporated into the RL framework, such approaches inherently impose a preferred structure
on the solution. In contrast, the simpler reward functions used here allow the RL agent to more
autonomously develop its own strategies, providing a flexible alternative for complex scenarios
where effective stroke patterns are not well understood or where the setup may be dynamically
changing. Lastly, we demonstrated the swimmer’s ability to autonomously adapt its stroke patterns
to navigate in any target direction, enabling it to trace complex trajectories and pursue moving
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targets (e.g., mimicking swimming bacteria or circulating tumor cells). These capabilities serve as
proof of concept for scenarios relevant to potential biomedical applications.

We remark on several limitations of the current study and discuss potential directions for future
research. First, we use a three-link swimmer here as a simple example to demonstrate the RL
approach. We anticipate that increasing the degrees of freedom by incorporating additional links will
enable a multilink swimmer to perform more complex maneuvers and further enhance propulsion
performance. Second, in demonstrating the swimmer’s ability to pursue a moving target, we neglect
the hydrodynamic interactions between the swimmer and the target. Incorporating these interactions
in future work could reveal new features in the strategies identified by RL. Lastly, the presence
of obstacles or flow perturbations in complex biological environments would also impact the
swimmer’s navigation. Addressing these challenges would pave the way for developing intelligent
microswimmers with more robust navigation capabilities.
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