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Biological microfilaments exhibit a variety of synchronization modes. Recent experiments observed that
a pair of isolated eukaryotic flagella, coupled solely via the fluid medium, display synchrony at nontrivial
phase lags in addition to in-phase and antiphase synchrony. Using an elastohydrodynamic filament model
in conjunction with numerical simulations and a Floquet-type theoretical analysis, we demonstrate that it is
possible to reach multiple synchronization states by varying the intrinsic activity of the filament and the
strength of hydrodynamic coupling between the two filaments. Then, we derive an evolution equation for
the phase difference between the two filaments at weak coupling, and use a Kuramoto-style phase
sensitivity analysis to reveal the nature of the bifurcations underlying the transitions between these different
synchronized states.
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Biological microfilaments, such as cilia and flagella,
exhibit a variety of synchronization modes. As the sur-
rounding fluid is an obvious medium for force trans-
mission, hydrodynamic interactions are deemed crucial
for synchronization. Two flagella isolated from the somatic
cells of Volvox carteri, and later of Chlamydomonas
reinhardtii and, thus, coupled via the fluid medium only,
synchronize their beating in phase or antiphase at close
interflagellar distance [1,2]. Synchronized states with non-
trivial phase lags, between 0 and π, have also been
observed, but not thoroughly analyzed [2].
Taylor pioneered the theoretical study of fluid-mediated

synchronization by considering two infinite sheets with
prescribed traveling waves; he found that in-phase syn-
chronization is stable and exhibits minimum viscous
energy dissipation [3]. Later, antiphase synchrony, charac-
terized by maximum dissipation, was also shown to be
stable [4]. Synchronization was also analyzed in experi-
ments with driven colloids [5–7] and in far-field models
[8–11], assuming that the interfilamentous distance h is
much larger than the filament length L so that each filament
can be modeled as an oscillating bead. Because of the time
reversibility of the Stokes equations, in addition to hydro-
dynamic coupling, either a nonconstant force profile
[10,11] or orbital compliance [9] is necessary to achieve
synchrony in the bead model. The synchronized state
depends on the force profile and shape of the orbit.
Particularly, for circular orbits, only in-phase synchrony
is stable, while for select elliptic orbits, synchronized states
with opposite phase or nontrivial phase lag appear to be
stable [8,10,11]. Despite the richness of these weakly
coupled bead models, in most biological situations, the
opposite regime where h ≪ L is more relevant, and the
slender geometry of the filament should be considered.

Until recently, there are a few elastic filament models for
synchronizations, and they mainly focus on in-phase and
antiphase synchronizations only [12–16].
Biological microfilaments, namely cilia and eukaryotic

flagella, are driven into sustained oscillations by an
intricate internal structure of microtubule doublets and
dynein motors [17,18]. The spatial and temporal regula-
tions of this molecular machinery are still under debate;
see, e.g., [19–22] and references therein. We posit that the
exact details driving flagellar oscillations matter little to the
coordination of multiple flagella. In this Letter, we apply a
recently proposed phenomenological model, in which the
active motor forces are represented by a tangential force F
exerted at the filament tip [23–25]. We show that two
filaments coupled via near-field hydrodynamics (h ≪ L)
can reach multiple synchronized states with the same,
opposite, and even nontrivial phase lags. We analyze the
stability and basins of attraction of these states using
Floquet theory and Kuramoto-style phase reduction
analysis.
In particular, we consider two identical filaments of

radius a and length L ≫ a, clamped at their base at a
distance h apart, and subject to an applied tangential force
F at their tip. We let rðs; tÞ denote the position of one of the
filaments as a function of time t and arclength s. The
subscripts ð� � �Þt and ð� � �Þs denote differentiation with
respect to t and s, respectively. The hydrodynamic force
density fh is anisotropic and proportional to the filament
velocity relative to the fluid velocity; namely,
fh ¼ −ξðI − 1

2
ttÞ·ðrt − vÞ. Here, we introduced the unit

tangent t ¼ rs and used the approximation that the
perpendicular drag coefficient ξ ¼ 4πμ= lnðL=aÞ is twice
as large as the tangential drag coefficient [26,27]. The
vector v represents the fluid velocity induced by the motion
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of the other filament; it is identically zero for a single
filament. For planar motions [in the ðx; yÞ plane], it is a
classic result that the elastic force is given by
fe ¼ −Brssss þ ðΛtÞs, where B denotes the bending
rigidity and Λ the tension enforcing filament inextensibility
[28]. Balance of forces fh þ fe ¼ 0 on each filament,
together with clamped-free boundary conditions, lead a
system of equations for the filaments dynamics. We express
this system in nondimensional form by choosing the length
scale L and the time scale given by the bending relaxation
time ξL4=B; the local force scales as B=L3.
To close the system, we use vðj→iÞ to denote the flow

field at filament i induced by the motion of filament j. For
a ≪ L and a ≪ h, the fluid velocity can be represented by
that induced by a line of Stokeslets distributed along the
centerline [29]. In the biologically relevant limit a ≪ h
≪ L, Man and coauthors calculated that, at the leading
order, vðj→iÞðsÞ ¼ fln½hðsÞ=L�=4πμgðIþ ttÞ · fðjÞh ðsÞ,
where hðsÞ is the distance between two filaments at
arclength s [30–32]. We assume that the wave amplitude
is, at most, of the same order as the basal interfilamentous
distance h, and define γ ¼ lnðL=hÞ= lnðL=aÞ to indicate the
strength of hydrodynamic coupling [12]. The flow velocity
reduces to vðj→iÞðsÞ ¼ −γrðjÞt ðsÞ. As the displacement in the
y direction is dominant, we relax the inextensibility
condition and approximate s ≈ x. The equations governing
the coupled oscillations of the two filaments are given by

yð1Þt − γyð2Þt ¼ −yð1Þxxxx þ 2Λð1Þ
x yð1Þx þ Λð1Þyð1Þxx ;

yð2Þt − γyð1Þt ¼ −yð2Þxxxx þ 2Λð2Þ
x yð2Þx þ Λð2Þyð2Þxx ; ð1Þ

subject to the boundary conditions (for i ¼ 1, 2)

yðiÞjx¼0 ¼ yðiÞx jx¼0 ¼ yðiÞxx jx¼1 ¼ yðiÞxxxjx¼1 ¼ 0:

We solve Eq. (1) numerically using an implicit finite
difference scheme similar to that in [33]; see
Supplemental Material (SM) [34].
For a single filament, ΛðxÞ ¼ −F holds along the

filament. As the active force F exceeds a critical value
Fcr ¼ 37.5, the filament buckles, and its linear dynamics is
characterized by unstable oscillations with growing ampli-
tude [23,24]. To saturate the oscillation amplitude, we
modify the tension by adding a nonlinear function of
curvature, Λ ¼ −F þ αy2xx, where the square comes from
consideration of symmetry and α is a constant that we
fix to α ¼ 4. The beat frequency depends on F not α.
The steady state behavior of the single filament
follows a periodic, limit-cycle solution y0ðx; t;FÞ, such
that y0ðx; tþ T;FÞ ¼ y0ðx; T;FÞ; see SM and Fig. S1 [34].
We define a phase parameter θ such that the filament
configuration can be parametrized by its phase in the
oscillation cycle y0½s; θðtÞ�, and θt ¼ ω, where ω=2π ¼
1=T is the oscillation frequency.

For two coupled filaments, we identify two periodic
solutions yðiÞðx; t;F; γÞ by direct inspection of Eq. (1): one
solution yð1Þ ¼ yð2Þ ¼ y0ðs; θÞ, θt ¼ ð1 − γÞ−1ω corre-
sponds to the two filaments synchronizing in phase and
following the same waveform as that of a single
filament albeit at a higher frequency; another solution,
yð1Þ ¼ −yð2Þ ¼ y0ðs; θÞ, θt ¼ ð1þ γÞ−1ω corresponds to
antiphase synchrony at a lower frequency. The fact that
in-phase solutions exhibit higher beat frequencies is con-
sistent with recent experimental observations and math-
ematical models [2,13,36].
We initialize the two filaments at different phases

yðiÞðx; t ¼ 0;F; γÞ ¼ y0ðx; θðiÞ0 Þ and solve Eq. (1) numeri-
cally. The steady state depends on the initial phase
difference Δθ0 ¼ θð2Þ0 − θð1Þ0 and the parameter values F
and γ. Interestingly, as we vary Δθ0, F, and γ, we find
synchronization modes other than the in-phase and anti-
phase synchrony described above. In Fig. 1, we show four
examples labeled I to IV. In I and II, the filaments converge
to in- and antiphase synchrony, respectively. In III, the
filaments oscillate nearly out of phase at different
amplitudes, while in IV, the amplitudes are almost identical,
and the filaments synchronize at a nontrivial phase lag,
Δθ=2π ¼ 0.28.
An analysis of the net hydrodynamic forces on the

coupled filaments in Fig. 1 (see SM and Figs. S3 and
S4 [34]) shows that (i) compared to the single filament, the
hydrodynamic force on each filament during in- and
antiphase synchrony remains the same, (ii) asymmetric
synchrony produces asymmetric forces that could result in
a net moment on the filament pair, and (iii) the total force
on both filaments is independent of the synchronization
mode and coupling strength γ.
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FIG. 1. Two active microfilaments synchronize their beating:
(a) in phase for F ¼ 46, γ ¼ 0.1, Δθ0=2π ¼ 0.2; (b) antiphase for
F ¼ 46, γ ¼ 0.1, Δθ0=2π ¼ 0.3; (c) at different amplitudes for
F ¼ 49, γ ¼ 0.1, Δθ0=2π ¼ 0.3; (d) at a nontrivial phase lag
(Δθ ≈ 0.56π) for F ¼ 48, γ ¼ 0.01, Δθ0=2π ¼ 0.3. In each
panel, left plots depict snapshots of the steady-state waveforms,
with increasing time highlighted in darker color, and right plots
show the tip deflection over one period of oscillation as a function
of phase θ=2π. These four cases, labeled I–IV, are highlighted in
Figs. 2 and 3.
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Next, we investigate the basins of attraction of these
synchronization modes by systematically varying the initial
phase difference Δθ0 for distinct values of F and γ. In
Fig. 2, we plot the results on the ðΔθ0; FÞ space, for
γ ¼ 0.01, 0.1, and 0.33, which represent weak, inter-
mediate, and strong hydrodynamic coupling, respectively.
We observe that the dynamics strongly depends on γ.
Under weak hydrodynamic coupling [Fig. 2(a)], all
three synchronization modes are observed. For F ≲ 44,
the filaments are always synchronized antiphase. For
45≲ F ≲ 48, the filaments exhibit bistable behavior; they
synchronize either in phase or with nontrivial phase lags
ranging approximately from 0.56π to π, as represented by
the color bar on the far right. For F ≳ 49, only in-phase
synchrony is observed. Under intermediate coupling
[Fig. 2(b)], the filaments exhibit bistable behavior for all
F with one transition: For F ≲ 48, the filaments syn-
chronize either in phase or antiphase, while for F ≳ 49,
they synchronize either in phase or at a nontrivial phase lag.
For strong coupling [Fig. 2(b)], the filaments exhibit
bistability between in-phase and antiphase synchrony.
We analyze the stability of in-phase and antiphase

synchrony using Floquet theory. First, considering the case
of in-phase synchrony yð1Þ ¼ yð2Þ ¼ y0½x; t; ð1 − γÞ−1ω�,
we add a perturbation δyðiÞ and substitute back into
Eq. (1). The perturbations δyðiÞ are governed by the linear
equations δyðiÞt − γδyðjÞt ¼ L½yðiÞ; y0�, where the right-
hand side is given by −yxxxx þ 2½ð−F þ αy20xxÞyxþ
2αy0xy0xxyxx�x − ð−F þ 3αy20xxÞyxx. By linearity, the
amplitude difference, δy− ¼ δyð1Þ − δyð2Þ, satisfies
ð1þ γÞδy−t ¼ L½δy−; y0�. Expressing in terms of the phase
coordinate θ, where θt ¼ ð1 − γÞ−1ω, we arrive at the
following linear equation about the in-phase state:

1þ γ

1 − γ
ωδy−θ ¼ L½δy−; y0ðx; θÞ�: ð2Þ

Similarly for the antiphase state, we can derive an equation
for the sum of perturbations, δyþ ¼ δyð1Þ þ δyð2Þ,

1 − γ

1þ γ
ωδyþθ ¼ L½δyþ; y0ðx; θÞ�: ð3Þ

The solutions δy� are of the form δy� ¼ δy�0 e
μt, where δy�0

is periodic and μ is the growth rate. We compute the
associated Floquet multipliers ρ ∼ eμT [37], by numerically
integrating Eqs. (2) and (3) over one period T. For jρj < 1,
¼ 1 or > 1, the corresponding synchronized state is stable,
marginally stable, or unstable, respectively. In Figs. 3(b)
and 3(c), we plot jρj versus γ for in-phase and antiphase
synchrony, respectively, and for F ¼ 42, 46, 48, and 49.
For F ¼ 46, γ ¼ 0.1, one has jρj < 1 for both modes,
consistently with cases I and II of Fig. 1. For F ¼ 49,
γ ¼ 0.1 and for F ¼ 48, γ ¼ 0.01, in-phase synchrony is
stable while antiphase is not, as in cases III and IV. Further,
the Floquet multipliers are consistent with all numerical
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FIG. 2. Basins of attraction of the synchronization modes: antiphase, in phase, and synchrony at nontrivial phase lag, as a function of
initial phase difference Δθ0 and the active force value F. The phase difference between two filaments at steady state, Δθ, is indicated by
the color of the dots. We vary the interfilament spacing such that (a) γ ¼ 0.01, (b) γ ¼ 0.1, and (c) γ ¼ 0.33, representing weak,
intermediate, and strong hydrodynamic couplings.
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FIG. 3. (a) Number of periods it takes to reach in-phase (blue)
or antiphase (yellow) synchrony versus 1= lnðjρj−1Þ; symbols
represent distinct values of γ and F. Floquet multipliers versus γ
for F ¼ 42, 46, 48, and 49, corresponding to (b) in-phase and
(c) antiphase synchrony.

PHYSICAL REVIEW LETTERS 125, 148101 (2020)

148101-3



predictions of in-phase and antiphase stability reported in
Fig. 2 (see SM and Fig. S3 [34]). Although this analysis
does not shed light on the stability of the states with
nontrivial phase lags, it does show that these states occur at
values of F and γ for which antiphase synchrony is
unstable.
We posit that, when synchrony is stable, the Floquet

multiplier ρ indicates the time it takes to synchronize. This
time scales as −1=μ ∼ 1= ln jρj−1 (μ < 0 for stable
synchrony). In Fig. 3(a), we verify this finding numerically
by calculating the number of periods until synchrony
is reached in the nonlinear simulations and plotting
versus 1= ln jρj−1. Small jρj indicates fast synchronization.
Interestingly, closer filaments with stronger hydrodynamic
coupling (larger γ) do not always exhibit more efficient
synchronization; while antiphase synchronization is always
achieved faster as the interfilamentous distance gets smaller
[Fig. 3(c)], in-phase synchronization is most efficient at
intermediate coupling [Fig. 3(b)].
To investigate the stability of all synchronized states,

including those with nontrivial phase lag, we derive an
evolution equation for the phase difference Δθ in the
case of weak coupling. We use the Kuramoto phase
reduction approach assuming that the dynamics of
each filament asymptotically follows the single filament
solution y0ðx; t; θðiÞÞ, albeit at a different phase [14]. We
rewrite Eq. (1) in terms of the eigenfunction u0ðx; θðiÞÞ ¼∂y0=∂θjθ¼θðiÞ associated with the zero eigenvalue of the
linear operator ðL − ω∂=∂θÞ, and introduce the normalized
adjoint function û0ðx; θÞ (see SM [34]). We project the
resulting equation onto the single filament solution u0 to
obtain θðiÞt ¼ ω½1þ γHðθðiÞ; θðjÞÞ�, where HðθðiÞ; θðjÞÞ ¼R
1
0 û0ðx; θðiÞÞu0ðx; θðjÞÞdx is the phase coupling function.
We average H over one cycle along the line
θð2Þ ¼ θð1Þ þ Δθ. The averaged H̄ðΔθÞ depends only on
the phase differenceΔθ. We arrive at the evolution equation

Δθt ¼ γωΨðΔθÞ; ð4Þ

where ΨðΔθÞ ¼ H̄ð−ΔθÞ − H̄ðΔθÞ. Clearly, ΨðΔθÞ ¼ 0
corresponds to equilibrium solutions of (4) for which the

two filaments are in synchrony. The sign of ∂Ψ=∂ðΔθÞ at
these synchronized states indicates their stability:
∂Ψ=∂ðΔθÞ is positive for unstable states and vice versa.
In Fig. 4, we plot Ψ as a function of Δθ for F ¼ 44, 45,

47, and 48. These plots reveal two types of bifurcations
underlying the transitions displayed in Fig. 2(a). At
F ¼ 44, in-phase synchrony is unstable and antiphase
synchrony is stable. Two supercritical pitchfork bifurca-
tions take place as F increases from 44 to 45, by which the
antiphase synchrony becomes unstable and two stable
equilibria appear at a nontrivial phase lag, and simulta-
neously, the in-phase synchrony becomes stable and two
unstable equilibria appear at a nontrivial phase lag. The
location of these equilibria changes with F. As F increases
from 47 to 48, two saddle-node bifurcations occur, and the
nontrivial equilibria vanish leaving stable in-phase and
unstable antiphase synchrony.
Last, we examine key features observed in experiments

with isolated flagella of Volvox carteri [1] in light of our
filament model. Results taken from [1] are shown in
Fig. 5(a); in-phase and antiphase synchronous beating
were reported for a range of coupling strength κ, where
κ is defined in terms of the time it takes for the two flagella
to synchronize. Based on our Floquet analysis, κ can be
expressed as κ ¼ −μ=ð2πωÞ, where −μ ¼ −ω ln ρ=ð2πÞ
and ρ depends on F and γ. We arrive at κ ¼
lnð1=ρÞ=ð4π2Þ, which, for fixed F, defines a map from γ
to κ (see SM [34]).
First, we match the filament active force F and frequency

of oscillation ω=2π to those of the flagella. The measured
flagellar frequency was about 30 HZ and total force about
50 pN [1]. Using flagellar length L ¼ 20 μm and bending
rigidity B ¼ 4 × 10−22 Nm2, the dimensionless counter-
parts are ω=2π ¼ 48 and F ¼ 50. For active force F ¼ 50
in our model, the resulting filament frequency ω=2π ¼ 46
[Fig. S1,(d)] is close to that of the flagellar beat, and the
distribution of forces along the filament and flagellum are
also similar [Fig. 5(b)].
In Fig. 5(c), we show the synchronization modes of a

filament pair for the range of κ reported in [1]. At small κ,
only in-phase synchrony is stable. As κ increases, both
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FIG. 4. Phase function Ψ versus phase difference Δθ at (a) F ¼ 44, (b) 45, (c) 47, and (d) 48. The solid and hollow dots correspond to
stable and unstable fixed points, respectively. The color scheme for Δθ uses the color map in Fig. 2.
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in- and antiphase synchrony are stable, consistent with
Fig. 2. The fraction of all initial phase differences
[grey region in Fig. 5(b)] that lead to in-phase synchrony
is shown in Fig. 5(d): fraction value 1 indicates that only
in-phase synchrony is stable while 0.5 means bistable in-
and antiphase synchrony with equal-size basins of attrac-
tion. To compare to Fig. 5(c), we interpret the experimental
data as random samples from the phase space in Fig. 5(b),
we divide κ evenly in log space into four ranges, and we
count the instances of in-phase synchrony in each range.
The fraction of in-phase to total number of data points in
each range are shown as red dots in Fig. 5(d). The results
agree remarkably well with the filament model.
These findings could be instrumental for deciphering the

biophysical and biochemical mechanisms underlying
transitions in flagellar synchrony [1,2,36]. Such transitions
could be triggered mechanically, say by random disturb-
ances causing a shift between bistable modes, or physio-
logically by modifying either the intensity of the filament
activity or interfilamentous coupling. The latter, in addition
to hydrodynamics, could be due to basal connections
between the flagella in the cell surface [38–40]. These

considerations, as well as extensions to arrays of micro-
filaments, will be treated in future works.
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