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Cilia, or eukaryotic flagella, are microscopic active filaments expressed on the
surface of many eukaryotic cells, from single-celled protozoa to mammalian
epithelial surfaces. Cilia are characterized by a highly conserved and intricate
internal structure in which molecular motors exert forces on microtubule
doublets causing cilia oscillations. The spatial and temporal regulations of
this molecular machinery are not well understood. Several theories suggest
that geometric feedback control from cilium deformations to molecular
activity is needed. Here, we implement a recent sliding control model,
where the unbinding of molecular motors is dictated by the sliding motion
between microtubule doublets. We investigate the waveforms exhibited by
the model cilium, as well as the associated molecular motor dynamics, for
hinged and clamped boundary conditions. Hinged filaments exhibit base-
to-tip oscillations while clamped filaments exhibit both base-to-tip and
tip-to-base oscillations. We report the change in oscillation frequencies
and amplitudes as a function of motor activity and sperm number, and we
discuss the validity of these results in the context of experimental
observations of cilia behaviour.

This article is part of the Theo Murphy meeting issue ‘Unity and diversity
of cilia in locomotion and transport’.
1. Introduction
Eukaryotic cilia and flagella are driven into oscillatory motion by an intricate
internal structure, referred to as the axoneme (figure 1). The axoneme structure,
composed of microtubule doublets and dynein molecular motors, is highly con-
served across evolutionary time and cell type [1,2]. However, the mechanisms
that regulate the activity of the molecular motors, causing them to produce
oscillatory motions, remain elusive. At present, there is no universal, exper-
imentally tested theory for describing the active forces and moments
generated in the axoneme that lead to sustained cilia oscillations.

Details of the structure of the axoneme of motile cilia were first delineated
by transmission electron microscopy in the middle of the twentieth century
[2]. The axoneme consists of nine microtubule doublets, connected to a central
pair of microtubules via radial spokes, which is known as the ‘9+2’ structure as
shown in figure 1. Nexin links connect the outer microtubule doublets. During
their power stroke, outer and inner dynein arms bind to neighbouring microtu-
bules, generating equal and opposite forces on adjacent microtubule doublets.
Unbinding of the dynein stalk requires energy—the energy released by the
hydrolysis of ATP. The key unresolved problem is the spatial and temporal
regulation of the binding and unbinding of molecular motors and its bearing
on the oscillations of the cilium.

Several experimental approaches have been proposed to address this problem
[3–12]. Rapid freezing of live cilia samples by sudden removal of ATP result in
rigour waves [4], and reactivation of these waves with reintroduction of ATP
shows wave propagation towards the flagellum tip as if oscillations had not
been interrupted [5,13]. These results, in conjunction with other experiments on
the functions of dyneinmotors [14], suggest that cilia oscillations are in tight con-
trol of the molecular machinery. By contrast, during experimentation with low
concentrations of ATP in the algae model system Chlamydomonas reinhardtii, fla-
gella were observed to bend at almost constant curvature, suggesting a static

http://crossmark.crossref.org/dialog/?doi=10.1098/rstb.2019.0157&domain=pdf&date_stamp=2019-12-30
http://dx.doi.org/10.1098/rstb/375/1792
http://dx.doi.org/10.1098/rstb/375/1792
mailto:kanso@usc.edu
http://orcid.org/
http://orcid.org/0000-0002-1766-073X
http://orcid.org/0000-0003-0336-585X


(b)(a)

Bridge

Pr
in

ci
pa

l R
everse

Dynein

12

3

4

5
6

7

8

9

Δ

F+

F−

a

+ −

ey

ex

ez

ey

Figure 1. Axoneme structure. (a) The cross section of a typical cilium. Dynein
motors between microtubule doublets induce sliding, which gets resisted by
elastic links. A symmetry-breaking bridge between two doublets separates
the dynein motors into principal (red) and reverse (blue) sides. (b) Model
cilium consists of two elastic filaments (+ and −) coupled by elastic
linker and damper, with dynein motors exerting sliding forces (F+ and
F−) on different sides of the cilium. The bending of the cilium results in
a relative sliding Δ between + and − filaments. (Online version in colour.)

royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

375:20190157

2

mode that is distinct from the dynamic beating mode [11,15].
Reactivation of the dynamic mode was possible with gradual
increase of ATP. The relaxed configurations observed at
low ATP and the transition to oscillatory motions with
increasing levels of ATP suggest that oscillations could be
induced by a mechanical instability that does not require fine
spatio-temporal regulation of the molecular motors.

Rapid freezing methods were recently coupled to power-
ful cryogenic electron microscopy to provide detailed
structures of the conformations of the molecular motors
[7–9,12]. Snapshots of the dynein conformations at various
instances of the cilium beating cycle were then correlated
with the overall waveform of the cilium to draw experimen-
tally based hypotheses on the regulation of the molecular
motors in relation to cilia oscillations [12]. Asymmetrical acti-
vation of the dynein motors correlates with local curvature,
suggesting that reciprocal inhibition is likely the main mech-
anism of dynein control at full waveform beating. These
results support the notion that oscillations are finely con-
trolled by the molecular motors [12], but they do not rule
out the existence of an ‘open-loop’ instability mechanism
that triggers the onset of oscillations.

Existing theories designed to shed light on the mechan-
isms controlling the molecular machinery either assume
geometric feedback control from the cilium configuration to
the molecular motor activity [16–29], or, more recently, rely
on steady distributed axial forces where the dynein activity
need not be affected by the cilium configuration [30–32].

Geometric feedback theories come in three flavours: slid-
ing control, curvature control or geometric clutch. The key
idea in the sliding control theory is that the activity of mol-
ecular motors, and thus the active forces they generate, is
regulated by the tangential sliding distance between two
adjacent microtubule doublets caused by the bending
motion of the axoneme [19,33,34]. The curvature control
theory considers that the magnitude of the active forces is
proportional to the curvature of the centreline of the axoneme
[17,18], whereas the geometric clutch approach considers the
active forces to be governed by the separation distances
between adjacent doublets [21,22,35]. Comparison of these
three feedback mechanisms suggests that curvature control
gives best-fits to experimentally observed waveforms [36,37].
However, regulation of dynein activitymay not be required
to generate oscillatory motions [30–32,38]. Oscillations arise as
a result of a dynamic buckling instability—a Hopf bifur-
cation—induced by the axial stresses applied by the dynein
motors on the axoneme. These mechanisms are particularly
appealing because they provide a simpler explanation for
sustained oscillations that does not require fine tuning of
the molecular motor activity, but they do not explain the
differential dynein binding observed in Lin & Nicastro [12].

Mathematical models, whether in support of feedback con-
trol or instability-driven oscillations, are an abstraction of the
axoneme structure, ignoring several details in favour of analyti-
cal representations of the cilium centreline. These models are
motivated by the fact that the ‘9+2’ axoneme is characterized
by a bridge that connects two adjacent doublets, labelled 1
and 2 in figure 1, thus dividing the dyneinmotors into principal
(P) and reverse (R) sides relative to the bridge. Motors on the
two sides operate antagonistically resulting in cilia oscillations.
This ‘tug-of-war’ aspect of the motor activity is minimally cap-
tured in the context of two elastic filaments (+) and (−) of length
L, representing opposite sides of the axonemal bridge and sep-
arated by a constant distance a at their base. The (±) filaments
are subject to an active force doublet that results in an active
moment density ma on the centreline, allowing it to deform in
the plane of motion, as shown in figure 1.

In this study, we implement a hierarchical model adapted
from Oriola et al. [39], and recently analysed in Chakrabarti &
Saintillan [40], that couples the centreline dynamics to a micro-
scopic model of the motor activity. We reproduce the results of
Chakrabarti & Saintillan [40] for clamped filaments, and we
extend their analysis of travellingwave direction to hinged fila-
ments: hinged filaments always exhibitwave propagation from
base-to-tip, while clamped filaments exhibit both base-to-tip
and tip-to-base oscillations. In hinged filaments, we observe
that molecular activities form sharp propagation fronts while
the filament oscillates smoothly. For clamped filaments, in
addition to the analysing direction of wave propagation over
the parameter space of motor activity and sperm number as
done in Chakrabarti & Saintillan [40], we analyse in detail the
change in amplitude and frequency of oscillations over the
same parameter space. We observe sharp transitions in both
amplitude and frequency across the lines marking the change
in wave direction. We conclude by comparing these trends to
experimental observations of cilia behaviour.
2. Mathematical formulation
The cilium centreline is described by r(s, t), where s is the arc
length measured from the base and t is time. The positions of
the (±) filaments are given by r+(s, t) ¼ r(s, t)+ a

2n, where n(s,
t) is the unit normal along the centreline and a is the separation
distancebetween the ± filaments.Wealso introduce theunit tan-
gent t(s, t) to the centreline. In a Cartesian coordinate, say (x,y)
whose origin is located at the base of the centreline, we write
t = [cosθ, sinθ], and n = [− sinθ, cosθ], where tanθ(s, t) = @y/@x
is the local slope of the centreline, and r = [x(s, t), y(s, t)].

The equations of motion of the centreline that arise from
balancing the tangential and normal forces and bending
moments, including the moment due to motor activity
[19,35,41,42], are given by

Fs þ fh ¼ 0 (2:1)
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and

Ms þN þma ¼ 0, (2:2)

where fh is the hydrodynamic force per unit length, ma is the
active moment per unit length, F = σt +Nn and M are the
internal forces and moment acting along the centreline,
with σ and N denoting the tangential and normal com-
ponents of the internal force. The notation Fs = ∂F/∂s and
Ms = ∂M/∂s is used to represent the spatial derivatives with
respect to s.

Due to the slenderness of the filament (a≪ L), we model
the hydrodynamic force using the resistive force theory at low
Reynolds number (e.g. [43,44]). That is, we consider fh to be
proportional to the local velocity with anisotropic drag
coefficients

fh ¼ �(jkttþ j?nn) � rt, (2:3)

where rt = ∂r/∂t represents the time derivative. The drag coef-
ficients satisfy j? ¼ 2jk with j? ¼ 4pm= ln (L=a). A more
accurate representation of the hydrodynamic forces in terms
of the slender-body theory (e.g. [45–48]), which includes the
algebraic corrections with non-local hydrodynamic inter-
actions, was considered in Chakrabarti & Saintillan [40].

Equation (2.1) can be written in scalar form as follows.
Substitute F = σt +Nn and (2.3) into (2.1) and multiply both
sides with (j�1

k ttþ j�1
? nn) to obtain the following represen-

tation of the filament velocity:

rt ¼ j�1
k (ss �Nus)tþ j�1

? (sus þNs)n: (2:4)

Here, we have substituted t s = θsn and n s =−θst. Now,
assume the filament is not extensible and apply the constraint
rts · rs = 0 to get, upon introducing g ¼ jk=j?,

sss � (1þ g)Nsus �Nuss � gsu2s ¼ 0 (2:5)

and

Nss � g�1Nu2s þ (1þ g�1)ssus þ suss ¼ j?ut: (2:6)

Equation (2.2) is simplified further by considering a linear
constitutive relation for the bending moment M = Bθs, where
B is the bending rigidity. Substituting into equation (2.2), we
have

Buss þN þma ¼ 0: (2:7)

Equations (2.5)–(2.7) provide a set of three coupled partial
differential equations that we use to solve for σ(s, t), N(s, t)
and θ(s, t), subject to properly chosen boundary conditions.
Here, we consider one end of the filament to be either
clamped or hinged at the wall, that is, at s = 0, and the
other end to be free. The force- and moment-free boundary
conditions at s = L are given by

sjs¼L ¼ 0, Njs¼L ¼ 0 and Busjs¼L ¼ 0: (2:8)

At the wall, from rt(s = 0, t) = 0, we get

(ss �Nus)js¼0 ¼ 0 and (sus þNs)js¼0 ¼ 0: (2:9)

If, in addition, we assume that the filament is clamped, we
have

ujs¼0 ¼ 0: (2:10)

However, if the filament is hinged, the total moment at s = 0
vanishes, leading to

Busjs¼0 �
ðL
0
ma(s0, t) ds0 ¼ 0: (2:11)

The filament dynamics can thus be obtained by solving
equations (2.5)–(2.7) subject to the six boundary conditions
in equations (2.8), (2.9) and either (2.10) for the clamped
case or (2.11) for the hinged case.

In the limit of small deformations θ(s, t), we see from (2.5)
and (2.6) that N∼O(θ) while σ∼O(θ2). Therefore, the tension
σ is negligible. We can cancel the normal force N by substitut-
ing equation (2.7) into (2.6), leading to a single governing
equation of the form (see appendix A)

j?ut ¼ �Bussss � (ma)ss: (2:12)

We will use the linearized equation in (2.12) to probe the
linear stability of the straight filament.

The active moment ma per unit length is generated by the
longitudinal force doublets f(s, t) per unit length that represent
the effects of the molecular motor activity

ma(s, t) ¼ af(s, t): (2:13)

As the centreline deforms and bends under the influence of
ma, it induces relative sliding Δ between the two (±) filaments
where the internal forces f (s, t) are applied (figure 1). The
relative sliding D ¼ Ð s

0 [j(r�)sj � j(rþ)sj] d~s is given by

D(s, t) ¼ a[u(s, t)� u(0, t)]: (2:14)

This sliding is resisted by cross-linker proteins that act as a
linear spring of stiffness K. This sliding resistance is crucial
to account for complex passive dynamics of the axoneme
[49–52]. In other words, the internal force density f consists
of active and passive parts, arising from both the motor
activity and the passive response of the nexin cross-linkers
[39,40]

f(s, t) ¼ r(nþFþ þ n�F�)� KD: (2:15)

Here, ρ is the average density of motors along both filaments,
n± are the fractions of motors on the ( ± ) filaments that are in
the bound state, F± is the load exerted by a single motor. To
close the model in (2.15), we must model the binding kinetics
of the molecular motors as well as the motor loads. For the
binding kinetics, we use a common two-state mechanochem-
ical model consisting of bound and unbound molecular
motors, with a constant total (bound or unbound) number
of motors on both filaments. A single motor can bind to the
opposite filament at a rate π and unbind at a rate ε. We
assume that the motors switch between these two states sto-
chastically; then, the fractions n± of attached and detached
motors follow the Fokker–Planck evolution equations

(n+)t ¼ p(1� n+)� en+: (2:16)

In earlier works [16,19,53], the exchange rates π and ε depend
on periodic potential landscapes that govern the interaction
of the molecular motors with the filaments. A simpler
model was proposed recently in Oriola et al. [39] based on
experimental measurements; in this empirical model, the
binding rate π = πo is constant and the unbinding rate ε expo-
nentially increases with the load F± exerted by the motor, ε =
εoexp ( ± F±/fc), where εo is a constant and fc is the character-
istic load for detachment. To model the load F±, we use a
linear force–velocity relationship F+ ¼ +fo(1+ Dt=vo),



Table 1. Filament/motor parameters reproduced from Oriola et al. [39] and
Chakrabarti & Saintillan [40] and dimensionless parameters used in simulation.

dimensional dimensionless

L 50 μm length scale (L)

B 0.9–1.7 nN μm2 force scale (B/L2)

τo 50 ms time scale (τo)

ξ⊥ 10−3–1 Pa s Sp = L(ξ⊥/Bτo)
1/4 5–15

fo 1–5 pN μa = ρa fo L
2/B 500–14000

fc 0.5–2.5 pN f* = fo/fc 2

K 2 × 103 pN μm−2 μ = a2 K L2/B 50

vo 5–7 μm s−1 ζ = a/voτo 0.4

a 200 nm η = πoτo 0.14

ρ 103 μm−1

µa = 6320  Sp = 10

µa = 6800  Sp = 5 µa = 6800  Sp = 10 µa = 6800  Sp = 15

µa = 10 160  Sp = 10 µa = 14 000  Sp = 10

(a)

(b)

Figure 2. Model cilium waveforms. (a) As motor activity μa increases, the
wave form changes its propagating direction from tip-to-base, to base-to-
tip. (b) As sperm number Sp increases, the wave form changes back and
eventually become stationary for large Sp. In all simulations, we used a
mesh size Δs = 0.01 and an integration time step of Δt = 3.125 × 10−4.
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where Δt is the sliding velocity and fo and vo are the stall force
and associated zero load velocity vo at which the motors are
at complete rest (see [39,40] and references therein for more
details).

Put together, equations (2.16) that govern the fractions n±
of motors bound to the ( ± ) filaments become

(n+)t ¼ po(1� n+)� eon+ exp
fo
fc

1+
Dt

vo

� �� �
, (2:17)

and the resulting force f (s, t) per unit length can be rewritten as

f(s, t) ¼ rfo (nþ � n�)� (nþ þ n�)
Dt

vo

� �
� KD: (2:18)

Equations (2.13), (2.17) and (2.18) need to be coupled to the fila-
ment equations, equations (2.5)–(2.7), via (2.14) to obtain a
closed system of equations. Non-dimensional equations are
obtained by considering the length scale of the filament L
and the time scale τo = 1/(πo + εo) of the motor kinetics. Specifi-
cally, we define the sperm number Sp4 ¼ fh=fe, where fh = ξ⊥L/
τo is the hydrodynamic force and fe = B/L3 is the elastic force
due to bending. We also define the dimensionless active
moment μa =ma/me, where me = B/L2 is the elastic bending
moment. Additional parameters include the stall to critical
molecular force ratio f* = fo/fc, the dimensionless sliding
moment μ = a2 K/me, the ratio ζ = a/voτo of the cilium diameter
a to the characteristic displacement voτo due to motor activity,
and the duty ratio η = πoτo. Table 1 summarizes all dimensional
and non-dimensional parameters.

Numerical solution of these nonlinear equations is obtained
following Chakrabarti & Saintillan [40]. Namely, we discretize
the arc length swith a second-order central difference method.
At each time step, we first calculate the normal force and
tension from the geometry. Then we apply a second-order
accuracy explicit time stepping for θ, and an implicit Euler
time stepping for n±. Additional details on the numerical
implementation can be found in appendix B.
3. Results
We first consider the model cilium with clamped boundary
conditions. We vary the sperm number Sp and activity μa
and examine the resulting beating patterns. Figure 2 shows
that, for Sp = 10, as μa increases, the bending waves change
from tip-to-base propagation to base-to-tip propagation, as
reported in Chakrabarti & Saintillan [40]. All results are
insensitive to initial conditions (see appendix C). For μa =
6800, as Sp increases, the bending wave switches from
base-to-tip propagation back to tip-to-base, and eventually
remains stationary for large values of Sp. Increasing Sp is
equivalent to increasing the cilium length, which, when hold-
ing all other parameters constant, leads to cases where
activity is insufficient to trigger oscillations.

We next examine the relationship between the filament
geometry and the dynein motor dynamics. According to
equation (2.17), the dynein detachment rates ε± are governed
by +Dt. Figure 3 shows that changes in the sliding Δ corre-
spond to the activation and inhibition of molecular motors
along the + and− filaments. Specifically, the tip-to-base bend-
ing wave corresponds to a tip-to-base travelling wave in the
motor activation dynamics n±, and when the bending wave
travels from base to tip, so does the motor activations. This
is in accord with the experimental findings of Lin & Nicastro
[12], where a ‘switch-inhibition’ mechanism was proposed.

For hinged boundary conditions (equation (2.11)), the
model cilium produces a bending wave travelling from
base to tip, consistent with the linearized analysis of Camalet
& Jülicher [19], for all Sp and μa tested. Note that for small
values of μa, the motor binding and unbinding dynamics
switch between the + and− filaments with no prominent
propagation of activity from base to tip (figure 4a). This
implies that the base-to-tip bending waves are mostly due
to elastohydrodynamics. For larger values of μa (figure 4b),
the motor binding dynamics form wave patterns that travel
from the base to its tip. Figure 4 also shows the formation
of sharp propagation fronts (or shocks) in n±. We numerically
verified the existence of these solutions for distinct time steps
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Figure 3. Motor switch-inhibition for clamped boundary condition. Snapshots of sliding magnitude Δ and dynein motor activities on + and− filaments, as well as
the values of Δ, n+, n− along arc length at different times (opacity indicates passage of time). Row (a) shows example with tip-to-base waves at a small value of
μa, while (b) shows that with base-to-tip waves after the second transition. Both examples have a clamped boundary condition at the base. In all simulations, we
used a mesh size Δs = 0.01 and an integration time step of Δt = 3.125 × 10−4. (Online version in colour.)
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Figure 4. Motor switch-inhibition for hinged boundary condition. Snapshots of sliding magnitude Δ and motor activities on + and− filaments, as well as the
values of Δ, n+, n− as functions of arc length at different times (opacity indicates passage of time). Row (a) shows results for a smaller value of motor activity
μa. Both examples have bending waves travelling from base to tip, but at smaller μa, there is little propagation in n±, thus the filament bending waves are
attributed to elastohydrodynamics. In all simulations, we used a mesh size Δs = 0.01 and an integration time step of Δt = 3.125 × 10−4. (Online version in colour.)
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(see appendix C). These sharp fronts imply that the molecular
motor dynamics follow a nonlinear wave equation.

We analyse the behaviour of the clamped filament as a
function of the parameter space Sp and μa. Analysis of
hinged filament is omitted here because the direction of
propagation of the bending waves does not change as we
vary these parameters. Specifically, in figure 5, we report
the beating amplitude and frequency of oscillations for
Sp = 5–15, μa = 2000–14 000. We also report the evolution of
the dominant eigenvalue based on linearized analysis (2.12)
as a function of μa for Sp = 10. The linear stability results
show an initial Hopf bifurcation leading to spontaneous
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Figure 5. Analysis of sliding feedback control of dynein kinetics. Amplitude and frequency of oscillations. Amplitude is defined in the transverse (y) direction.
Fundamental frequencies are obtained through autocorrelation of the time histories of the nonlinear waveform. Colours correspond to amplitude and frequency
values as indicated by the colourbars to the right. Black squares indicate that multiple travelling or standing waves compete and a steady-state behaviour
was not observed. Dominant eigenvalues from linear stability analysis are shown with respect to activity μa at Sp =10. The light grey region highlights the
regime post the first bifurcation, where the filament undergoes spontaneous oscillation with tip-to-base bending waves. Dark grey indicates the regime post
the second bifurcation where the filament bending waves travel from base to tip. In both regions, frequency decreases and amplitude increases with respect
to increase in activity. Note that sperm number shown is normalized with respect to drag coefficient ξ⊥ (instead of fluid viscosity in [40]). In all simulations,
we used a mesh size Δs = 0.01 and an integration time step of Δt = 3.125 × 10−4. (Online version in colour.)
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oscillations from tip to base, and a second transition leading
to base-to-tip travelling waves, as reported in Chakrabarti &
Saintillan [40]. A close examination of the amplitude and fre-
quency of oscillations across these transitions (delineated by
solid lines) in the left two panels of figure 5, shows the fol-
lowing: (i) there is a jump or discontinuity in amplitude
and frequency at the second transition when bending
waves change the direction of propagation, and (ii) in both
regimes, the amplitude of oscillations increase with increas-
ing activity and the frequency decreases. This is in contrast
to experimental observations where an increase in ATP con-
centration (for which μa is a proxy) correspond to saturated
growth in both beating amplitudes and frequencies [10].
4. Discussion
We revisited a model of cilia oscillations with sliding feedback
control [39,40], and examined differences in filament dynamics
with respect to different boundary conditions. As the activity
level increases, the model exhibits a Hopf bifurcation that
leads to sustained oscillations. The direction of deformation
waves depends on the boundary conditions. For hinged bound-
ary conditions, the waves propagate from base to tip only. For
clamped boundary conditions, thewaves propagate from tip to
base following this Hopf bifurcation, and a second bifurcation
exists at higher activity levels leading to reversal in wave
propagation from tip-to-base to base-to-tip.

The exact mechanical conditions at the base of cilia and fla-
gella are very complex. Cilia from different cell types can
originate from basal bodies with diverse structural details
[54]. The realistic boundary conditions at the base of cilia are
probably in between the ideal cases of clampedandhinged fila-
ments, and are likely to vary between organisms and during
the different stages of development. The two cases studied
here serve to highlight the subtle effects of the mechanical
conditions at the boundary on filament oscillations.

Certain microorganisms of the order Trypanosomatida
are known to control the direction of flagellar beat propa-
gation [55–58]. The model suggests that sliding motor
control could enable such wave reversal for clamped fila-
ments. Further, the model generates bending waves that are
correlated with switch-inhibition of motor activation similar
to experimental observations [12]. However, other evidence
points to the incompleteness of this sliding control model.
In the model, the oscillation amplitude increases with increas-
ing motor activity and the frequency decreases. These trends
are in striking contrast to experimental observations of cilia,
where the oscillation amplitude and frequency undergo satu-
rated growth with increasing ATP levels [10]. Moreover, in
this sliding feedback model, the waveforms differ from the
beating patterns observed in cilia. To produce cilia-like oscil-
lations, Chakrabarti & Saintillan [40] introduced curvature
control and bias in the molecular motor kinetics. The
mechano-chemical processes that would form the basis of
such bias are not clear. Based on these discrepancies, we
are inclined to conclude that the sliding feedback control,
although it may play a role in the molecular motor kinetics,
is unlikely to be the only mechanism driving cilia oscillations.

To date, mathematical models of cilia have generated a
gallery of potential mechanisms that can lead to sustained
oscillations. Recent studies have begun to address the relative
merits of these candidate mechanisms in comparison to
experiments [36,59–64]. However, at present, there is no
experimental benchmark of cilia oscillations under agreed
upon ‘nominal’ and ‘altered’ conditions that can be used as
a testbed for theoretical models. To evaluate mathematical
models, we need to compare their behaviour to experimental
results, but, more importantly, we need to test their predictive
ability under altered conditions. The analysis presented in
Bottier et al. [60] of oscillation frequency versus cilium
length in the Chlamydomonas is an example. Four theoretical
models were tested in Bottier et al. [60], none of which was
able to reproduce the experimentally observed trends in fre-
quency versus length. Until we, as a community, establish
clear experimental benchmarks that can be used to scrutinize
theoretical models for their ability to reproduce cilia beating
patterns and to predict changes in these patterns under
altered conditions, the regulation of molecular motor activity
in cilia oscillations remains an open problem.
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Figure 6. Robustness to initial conditions. Initial values (red) for r and final
steady orbit (greyscale) of r and n+ before T = 25 are shown for two differ-
ent initial conditions. Initial conditions for motor states are always chosen to
be constant with respect to s (not shown). In (a), we start from an almost
straight configuration except that the midpoint is perturbed slightly, θ(s =
0.5, t = 0) = 0.001. In (b), the initial condition for θ is set to be 0.2sin (3πs).
It is clear that resultant steady orbit for both θ and n+ are identical, except
that due to the hinged boundary condition, the mean angular position of the
final periodic solution is determined by that of the initial condition. In both
cases, the motor state n+ exhibit identical sharp wave front propagation from
base to tip. Here we used Sp =5 and μa = 3500, identical to figure 4b in the
main text. We also used a mesh size Δs = 0.01 and an integration time step
of Δt = 3.125 × 10−4. (Online version in colour.)
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Appendix A. Linearization
The dimensionless nonlinear equations are of the form (using
g ¼ jk=j? ¼ 1=2)

0 ¼ sss � 3
2
Nsus �Nuss � 1

2
su2s , (A 1)

Sp4ut ¼ Nss � 2Nu2s þ 3ssus þ suss, (A 2)
0 ¼ uss þN þ maf , (A 3)

f ¼ (nþ � n�)� zut(nþ þ n�)� m

ma
u (A 4)

and (@n+)t ¼ h(1� n+)

� (1� h)n+ exp [f�(1+ zut)]:
(A 5)

When the filament is clamped at the base, the nonlinear
boundary conditions are

ujs¼0 ¼ 0, (sus þNs)js¼0 ¼ 0, (ss �Nus)js¼0 ¼ 0 (A 6)

and

usjs¼1 ¼ 0, sjs¼1 ¼ 0, Njs¼1 ¼ 0: (A 7)

Assuming small displacement around the straight filament
configuration (θ = δθ), we can linearize equations (A 1)–(A 3)
and obtain the following linear equations for the filament:

Sp4ut ¼ Nss (A 8)

and

N ¼ mu� uss � ma[(nþ � n�)� zut(nþ þ n�)]: (A 9)

Since the equilibrium solution of n± is no = η/(η + (1−
η)ef*), we can obtain the leading-order equation for motor
states by substituting n± = no ± δn into equation (A 5) and get

dnt ¼ �[hþ (1� h)e f
�
]dnþ (1� h)f�e f

�
znout: (A 10)

Equation (2.12) of main text can be thus obtained by sub-
stituting equation (A 9) into (A 8). But for the purpose of
computing dominant eigenvalues shown in figure 5, we can
linearize the boundary conditions and get

ujs¼0 ¼ 0, Nsjs¼0 ¼ 0 (A 11)

and

usjs¼1 ¼ 0, Njs¼1 ¼ 0: (A 12)

for the clamped case, and solve equations (A 8) and (A 9)
directly after discretization of the spatial derivatives.
Appendix B. Numerical method
Following Chakrabarti & Saintillan [40], we discretize the
arc length s uniformly with M + 1 points, with mesh size
Δs = 1/M. We use the second-order central difference formula
for the spatial derivatives

(�)s,j ≃ 1
2Ds

[� (�) j�1 þ (�) jþ1] (B 1)
and

(�)ss,j ≃ 1
Ds2

[(�) j�1 � 2(�) j þ (�) jþ1]: (B 2)

We use second-order forward and backward difference
formula to enforce the base and tip boundary conditions,
respectively.

To obtain nonlinear solutions for θ, we first substitute
equations (A 2) and (A 4) into (A 3) and obtain

Sp4[ma(nþ � n�)� muþ uss þN]

¼ maz(nþ þ n�)[Nss � 2Nu2s þ 3ssus þ suss]: (B 3)

Then at each time step k, we first calculate the normal force
N(k) and tension σ(k) using equations (A 1) and (B 3). We
then enforce boundary conditions for σ(k) and N(k) using
θ(k−1). Next, we employ a second-order backward scheme to
equation (A 2) and get

Sp4

2Dt
[3u(kþ1) � 4u(k) þ u(k�1)]

¼ N(k)
ss � 2N(k)(u(k)s )2 þ 3s(k)

s u(k)s þ s(k)u(k)ss :

(B 4)

We enforce the boundary conditions for θ(k) at this step. Finally,
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we use the implicit Euler scheme on equation (A 5) to get

1
Dt

[n(kþ1)
+ � n(k)+ ]

¼ h[1� n(kþ1)
+ ]� (1� h)n(kþ1)

+ exp [f�(1+ zu(k)t )], (B 5)

where u(k)t ¼ Dt�1[u(kþ1) � u(k)].
When solving for the hinged boundary condition, we

replace the first formula in equation (A 6) with

usjs¼0 � ma

ð1
0
f(s0, t) ds0 ¼ 0: (B 6)

Substituting equations (A 3) into (B 6), we get

usjs¼0 � ma

ð1
0
f(s0, t) ds0 ¼ usjs¼0 þ

ð1
0
(uss þN)ds0

¼ usjs¼0 � usjs¼0 þ
ð1
0
N ds,

¼
ð1
0
N ds, (B 7)

where we used the boundary condition θs|s=1 = 0. We arrive
at
ð1
0
N ds ¼ 0: (B 8)
This constraint needs to be enforced when solving for the
normal and tensile components of the force via equations (A 1)
and (B 3). The discretized version of this integral constraint is

1
2
N1 þ

XM
j¼2

Nj þ 1
2
NMþ1 ¼ 0: (B 9)

All other equations follow the same form as in the clamped
case.
Appendix C. Numerical validations
We have verified that our results for the clamped boundary
conditions are similar to those reported in Oriola et al. [39]
and Chakrabarti & Saintillan [40]. Here, we present our vali-
dation results for the hinged boundary condition only. We
choose the case shown in figure 4 of the main text as our
test case. In figure 6, we use two distinct initial conditions
and show that the filament behaviour is robust to variations
in initial conditions. In figure 7, we vary the integration time
step and show that the filament behaviour and molecular
motor dynamics are robust to the integration time step. All
simulations of this work; we choose a mesh size Δs = 0.01
and an integration time step of Δt = 3.125 × 10−4.
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