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Morphological transitions of axially-driven
microfilaments†

Yi Man and Eva Kanso *

The interactions of microtubules with motor proteins are ubiquitous in cellular and sub-cellular

processes that involve motility and cargo transport. In vitro motility assays have demonstrated that

motor-driven microtubules exhibit rich dynamical behaviors from straight to curved configurations.

Here, we theoretically investigate the dynamic instabilities of elastic filaments, with free-ends, driven by

single follower forces that emulate the action of molecular motors. Using the resistive force theory at

low Reynolds number, and a combination of numerical techniques with linear stability analysis, we show

the existence of four distinct regimes of filament behavior, including a novel buckled state with locked

curvature. These successive instabilities recapitulate the full range of experimentally-observed

microtubule behavior, implying that neither structural nor actuation asymmetry are needed to elicit this

rich repertoire of motion.

I. Introduction

Microtubules are one of the main filamentous biopolymers that
form the cytoskeleton of eukaryotic cells. They play crucial roles
in the structural stability of cells as well as in dynamic processes
such as cell motility, division, re-organization, adhesion, and
signaling.1,2 Microtubules are formed of a–b tubulin dimers.
The polymerization process by tail–head stacking of these dimers
leads to an inherent polarity, with each microtubule characterized
by a highly dynamic plus end and a relatively stable minus end.1,3

Microtubules gain activity through the interactions with motor
proteins, namely kinesin and dynein motors. These molecular
motors transfer chemical energy in the cytoplasm – in the form of
adenosine-triphosphate (ATP) – into mechanical work allowing
them to move unidirectionally along microtubules; kinesin
motors move towards the plus end, while dynein motors towards
the minus end.1,3 Reciprocally, by the law of action–reaction,
molecular motors can exert forces that drive the microtubules
into motion.

Microtubules have a persistence length (ratio of elastic to
Brownian forces) around 1 mm, which is much larger than their
typical length L E 50 mm. Therefore, Brownian forces can be
neglected. Individual microtubules can be viewed as elastic
rods or filaments, immersed within a fluid, and acted upon by
motor proteins.3,4 Although microtubules constitute a rather
stiff part of the cytoskeleton, experiments have found that a
microtubule can buckle under the action of a longitudinal force

of magnitude as small as 1 pN.5 This buckling instability causes
the microtubule to deform and assume curved configurations,
which have been well observed experimentally in in vitro moti-
lity or gliding assays. In the gliding assays, molecular motors
are attached to a substrate and the microtubules added into the
ATP-rich solution are propelled along the surface by the action
of the anchored motors.4–8 Early gliding assays were used to
infer the forces exerted by these molecular motors.4–6 For example,
in ref. 9, to estimate the average forces of myosin motors, the
authors analyzed the buckling of the actin filaments fixed spatially
at their leading end. These actin filaments were shown to undergo
both rotations and flapping oscillations and their behavior was
analyzed mathematically in the context of elastic beam models.10

More recently, high-density gliding assays are used as a model
system for the collective dynamics of active materials.7,8 An inter-
esting feature that is consistently observed in these experiments is
that, while many microtubules translate in a straight configuration,
some microtubules curl into tight arc-shaped configurations and
trace circular trajectories or rings with radii of a few tens of microns
(see Fig. 1). Meanwhile, other microtubules move on almost regular
wavy trajectories, at similar wavelengths and smaller amplitude.7,11

Theoretical models that aim at explaining the mechanisms
underlying the curling of microtubules in these motility assays
attribute it to one of two possibilities: (i) a structural bistability
of the tubulin dimers, which allow them to exist in two distinct
conformations, one slightly shorter than the other. This causes
the microtubule to curve when a portion of its sub-segments
switch between the two states, providing a mechanism to create
rings via an internal change to the microtubule,12 or (ii) differential
binding of molecular motors on opposite sides of the microtubule,
which actively contribute to its curling.13 Although these theories
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are appealing, evidence supporting the hypotheses that structural
or actuation asymmetries are required for achieving filament
motions at buckled configuration with locked curvature remains
circumstantial at best. Here, we propose an alternative, open-loop,
mechanism that produces, without inherent asymmetry, the full
range of the experimentally-observed microtubule behaviors from
straight and undulatory translational motions to circular motions
at locked curvatures.

By way of background, it is important to note that the
morphological dynamics of active elastic filaments in viscous
flows incited a great deal of work in recent years; see, for
example ref. 14–17, and references therein for various models
of activity profiles. Elastic filaments constitute an excellent
model system for understanding various biophysical processes
from ciliary beating18 and flagellar propulsion19–23 to intracellular
streaming.24 They also form a key ingredient to deciphering
the rheological behavior of many complex fluids and soft
materials25,26 and for the collective behavior of active suspen-
sions.27,28 Here, we present a focused review of this growing
literature; the interested reader is referred to ref. 3, 29, 30 and
references therein for additional details. De Canio, Lauga and
Goldstein recently used a planar filament, anchored at one end
and acted upon by a compressive follower force at the distal
end to model the action of molecular motors on microtubule
filaments.31 As the force strength increased, the filament under-
went a flutter instability leading to planar flapping motions.
In ref. 32, the same anchored filament, free to undergo three-
dimensional motion, was shown to exhibit richer dynamics,
including three-dimensional spinning at a buckled configu-
ration with locked curvature. The role of the hydrodynamic
drag can be more significant for a filament with free-ends.
Ref. 33 numerically examined the existence of undulatory
motions in a model of a free-end filament acted upon by motor
forces. The morphological changes of passive actin filaments
with free-ends placed in background shear or extensile flows
were considered in a series of experimental and theoretical
models that showed various transitions from tumbling to coiling
and snaking, as discussed in ref. 34 and 35 and references therein.

In this paper, we develop a classic elastohydrodynamic model,
balancing elasticity and viscous drag, that takes into account
minimal features of the microtubule and motor protein inter-
actions: a free-end elastic filament submerged in viscous fluid and
acted upon by a longitudinal point force of constant magnitude

that remains tangent to the filament for all time (Fig. 2). We vary
the strength and location of the point force along the filament.
In the context of this simple model, we observe up to four
successive instabilities as we increase the force strength, spanning
the full range of experimentally-observed microtubule behavior in
the gliding assays. This nonlinear behavior is consistent with a
linear stability analysis of the filament dynamics. It is also
consistent with a lower-order bead-spring model that clearly gives
rise to the structure of the eigenvalues underlying these morpho-
logical transitions. In addition, we discuss the role of the location
of the actuation force and we present a scaling law that estimates
the critical force value where the transition to a locked-curvature
occurs.

II. Microfilament model

We consider a slender elastic filament of length L, with free
ends, actuated by an arbitrary force distribution fa along its
centerline. The force fa(t, s) is a function of both time t and
arclength s along the filament, where s A [0, L]. The centerline
of the filament is represented by the position vector r(t, s)
relative a fixed inertial frame (e1,e2,e3), where (e1,e2) span the
plane of motion of the filament. The geometry of the filament
can be determined from the local tangential and normal unit
vectors t(t, s) and n(t, s), chosen such that n points in the
direction of increasing curvature. Equivalently, the filament
geometry can be obtained from the local slope angle y(t, s) of
the body frame, such that ts = ysn and tt = ytn, where ys = qy/qs
is the curvature of the filament. Here, and throughout this
manuscript, we will use the subscript ( )s to denote differentiation

Fig. 1 Microtubule behavior in motility assays: snapshots extracted from Movie S1 of ref. 7. Many microtubules glide in a straight or wavy configuration.
One microtubule (indicated by the green arrow) traces a closed circular trajectory for the full duration of the movie, while another (indicated by the red
arrow) enters into a curved state at about 30 s, rotates until about 80 s, then recovers its straight configuration.

Fig. 2 Microfilament model: an elastic filament with free ends is driven
by a point force fp, located at s = sp, where s A [0, L] is the arclength from
0 to the total length L. The local slope is represented by the angle y,
and the local tangential and normal directions are t and n.
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with respect to arclength s and ()t to denote differentiation with
respect to time t.

In addition to the actuation force fa = f8(t, s)t + f>(t, s)n, the
filament is subject to a restoring elastic force fe, that is a
function of the filament geometry, and a hydrodynamic drag
force fh, which is proportional to the filament velocity. At zero
Reynolds number, these forces satisfy the local force balance

fh + fe + fa = 0. (1)

It is a classical results that the elastic force density fe

satisfies29,36

fe = �Arssss � [L(s)rs]s, (2)

where A is the bending rigidity and L is the line tension that
prevents the filament from being extended or compressed.
Mathematically, L is a Lagrange multiplier that satisfies the
inextensibility constraint rts�rs = 0. We calculate the hydro-
dynamic force fh using the resistive force theory,37,38 where fh

is proportional to the local velocity, with the anisotropic drag
coefficients x> and x8 along the normal and tangential direc-
tions respectively,

fh = �(x>nn + x8tt)�rt. (3)

Substituting eqn (2) and (3) into eqn (1), we obtain the govern-
ing equation as a hyperdiffusive partial differential equation

�(x>nn + x8tt)�rt � Arssss � (Lrs)s + fa = 0. (4)

We non-dimensionlize eqn (4) by choosing the filament length
L as the length scale and the elastic relaxation time x>L4/A as
the time scale; eqn (4) becomes

�(nn + gtt)�rt � rssss � (Lrs)s + fa = 0, (5)

where g = x8/x>. Here, we redefined all the variables in
dimensionless form, such that tension is scaled by A/L2, and
force density is scaled by A/L3.

We next rewrite eqn (5) in scalar form. To this end, we first
take the dot product between eqn (5) and t, n, and use the
relation ts = ysn. We arrive at the velocity components

rt�t = g�1(3ysyss � Ls + f8), (6a)

rt�n = �ysss + ys
3 � Lys + f>. (6b)

We take the derivative of eqn (6) with respect to s to obtain

rts�t + ysrt�n = g�1[3yss
2 + 3ysysss � Lss + ( f8)s], (7a)

rts�n � ysrt�t = �yssss + 3ys
2yss � (Lys)s + ( f>)s. (7b)

Using the relations rts�t = 0 and rts�n = yt and eqn (6), we obtain
the scalar form of the governing equations for y(t, s) and L(t, s),
namely,

yt ¼ � yssss � Lyss � 1þ g�1
� �

Lsys

þ 3 1þ g�1
� �

ys2yss þ g�1fkys þ f?ð Þs;
(8a)

Lss � gys2L ¼ 3yss2 þ ð3þ gÞyssysss

� gys4 þ fk
� �

s
� gf?ys:

(8b)

The boundary conditions for the filament with free-ends are
given by the moment- and force-free conditions rss = 0 and
rsss = 0 at both ends s = 0 and s = L, leading to

ys(0) = yss(0) = ys(1) = yss(1) = 0, (9a)

L(0) = L(1) = 0. (9b)

In obtaining eqn (8) from eqn (6), y and L got decoupled from
the translational motion of the filament. This decoupling,
or reduction, is possible because the filament dynamics is
invariant under rigid body translations. To obtain the full
filament dynamics, we first solve for the filament geometry y
(shape and orientation) and tension L using eqn (8), together
with the boundary conditions in eqn (9), then we calculate the
translational velocity using eqn (6) and solve for the transla-
tional motion of the filament.

We consider the case where the filament is pushed by a
single follower force exerted at the point s = sp, sp A (0,1), such
that f> = 0 and f8(s) = fpd(s � sp), where fp is constant, and the
actuation force profile is given by

fa = fpd(s � sp)t. (10)

We numerically solve eqn (8) and (9). To smooth the singularity,
we use the regularized form of the Dirac delta function

deðxÞ �
1ffiffiffiffiffiffi
2p
p

e
e
� x2

2e2 ; (11)

where e is a small regularization parameter. Details of the
numerical methods can be found in the ESI.† 39

III. Linearized equations

For actuation forces fa = fpd(s � sp)t of constant magnitude fp,
the straight filament configuration is a relative equilibrium of
eqn (8). That is to say, starting from a straight configuration,
the filament remains straight for all time and translates freely
along its tangential direction, at a constant translational velo-
city dictated by the balance between the applied force fa and the
hydrodynamic drag force fh.

To investigate the stability of these relative equilibria, we
assume small filament deformations and linearize eqn (8)
about the straight configuration to get

yt = �yssss � Lyss � (1 + g�1)Lsys + g�1ys fp(s � sp), (12a)

Lss = fp[d(s � sp)]s. (12b)

We integrate eqn (12b), together with the boundary conditions
in eqn (9b), to obtain an expression for the tension L along the
filament,

L(s) = fp[H(s � sp) � s], (13)
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where H(s � sp) is the Heaviside step function. Then, we
substitute eqn (13) into eqn (12a) to get the linear equation
for y

yt = �yssss � fp[H(s � sp) � s]yss � fp[d(s � sp) � (1 + g�1)]ys.
(14)

To solve this linear partial differential equation, we assume
separation of time and space such that

y(s,t) = ŷ(s)eot, (15)

with the initial condition y(s,t = 0) = ŷ(s) and growth rate o.
We substitute eqn (15) into eqn (14) to obtain, together with
the free-ends boundary conditions (9a) for ŷ, the eigenvalue
problem

oŷ ¼ � ŷssss � fp H s� sp
� �

� s
� �

ŷss

� fp d s� sp
� �

� 1þ g�1
� �� �

ŷs:
(16)

This eigenvalue problem is not trivial to solve due to the
appearance of non-constant coefficients in the linear ordinary
differential equation. Here, we compute the eigenvalues
numerically by discretizing the right-hand of eqn (16) using a
second-order, finite-difference approximation.

IV. Microfilament behavior

We numerically investigate the behavior of the elastic filament
under an axial point force fpL3/A applied at sp/L = 0.4. Here, we
use the dimensional form of sp and fp. Starting from a slightly-
curved initial geometry, we systematically increase the value of
the dimensionless force magnitude fpL3/A such that fpL3/A = 80,
180, 220, 290, and 300. We observe five successive regimes of
motion and filament configuration, from straight to oscillatory
motions. Fig. 3 depicts the corresponding trajectories in a
fixed inertial frame. In Fig. 3(a), at relatively small magnitude
fpL3/A = 80, the filament relaxes uniformly to its straight shape
while it translates along a fixed direction determined by initial
conditions. At fpL3/A = 180, the filament buckles into a curved
shape as it translates and rotates rigidly while maintaining a
locked-curvature as shown in Fig. 3(b); the radius of the circular
trajectory traced by the filament depends on fpL3/A but is
independent of initial conditions. Specifically, this radius first
decreases as fpL3/A increases, reaches a minimum, then
increases again. In Fig. 3(c), as we increase the force further
to fpL3/A, a counter-intuitive motion occurs where the filament
escapes from the circular motion and relaxes back to the
straight shape. This ‘escape’ behavior is observed for a relatively
short range of forces. For larger values of fpL3/A, the filament
oscillates while undergoing a translational motion. At first, the
oscillation amplitude decays to zero as shown in Fig. 3(d) for

Fig. 3 Trajectory of the filament actuated by a tangential point force applied at sp/L = 0.4, with dimensionless force magnitude fpL3/A. The initial state is a
curved geometry, shown in faded color. Darker color corresponds to increasing time. (a) For fpL3/A = 80, the filament recovers its straight geometry.
(b) Increasing the force to fpL3/A = 180, the filament undergoes a circular motion with a locked curvature. (c) However, at a larger force fpL3/A = 220, the
filament escapes from the circular motion and recovers its straight geometry again. (d) At fpL3/A = 290, the filament exhibits decaying oscillations as it
returns to its straight shape. (e) At fpL3/A = 300, the amplitude grows to a bounded value and the filament demonstrates a motion similar to undulatory
swimming (see Movies S1–S5, ESI†).
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fpL3/A = 290. At larger force values, the filament undergoes
sustained oscillations, at bounded amplitudes, similar to those
observed in undulatory swimming, as shown in Fig. 3(e) for
fpL3/A = 300.

We calculate the dimensionless bending energy 2EbL/A,

2EbL

A
¼
ð1
0

ys2ds0; (17)

associated with each of these regimes. In Fig. 4, we plot the
bending energy versus time for the five cases shown in Fig. 3;
the insets represent the filament geometry in a body frame
fixed at sp/L = 0.4. The initial geometry is highlighted in a faded
(red) color and later geometries are shown in deeper color as
time evolves. Clearly, the bending energy goes to zero when the
filament returns to its straight configuration in Fig. 4(a, c and d),
with the exception that in the latter, the decaying oscillations of
the filament are manifested in decaying oscillations of the
corresponding bending energy. In Fig. 4(b), the bending energy
reaches a nonzero constant, corresponding to the internal energy
stored in the filament at this locked-curvature whereas in Fig. 4(e)
the bending energy oscillates in time. Note that even if the applied
force increases from fpL3/A = 180 in (b) to fpL3/A = 300 in (e), the
bending energy decreases. This corresponds to the increase in
hydrodynamic dissipations with the filament oscillation compar-
ing to the locked-curvature motion.

In Fig. 5(a), we systematically examine the long-term non-
linear behavior of the filament by plotting the corresponding
bending energy as a function of the applied force. As fpL3/A
increases from 0 to 300, we observe successive changes in
the stored elastic energy that reflect the distinct regimes of
filament behavior from straight (1) to curved with locked
shape (2), back to straight (1), then to decaying oscillations (3),
and finally to bounded oscillations (4). In the latter, we report
the maximum, minimum, and average values of the elastic
energy, as highlighted in the grey region in Fig. 5(a). The
transitions between these regimes occur at around fpL3/A =
111, 213, 234 and 297. It is worth noting that in regime (2), as
fpL3/A increases, the filament curvature increases (implied from
the bending energy in Fig. 5(a)), reaches a maximum, then
decreases, in a way that is inversely proportional to the radius
of the circular trajectory traced by the filament (Fig. 3b).
Specifically, as the filament curvature decreases, the radius
increases until the filament ‘escapes’ from this regime and
returns to a stable straight configuration.

V. Linear stability analysis

We next analyze the linear stability of the filament subject to
small deformations by computing the eigenvalues o associated
with eqn (16). In Fig. 5(b), we report the real and imaginary
components of the dominant branch, the branch with the

Fig. 4 Bending energy of the filament as a function of time for the trajectories shown in Fig. 3. The inset figures depict the changes in the filament
geometry in the body frame fixed at sp; darker colors correspond to increasing time. The dashed line of 2LEb/A = 1 is the bending energy of the initial
configuration.
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largest nonzero real part Re(o), as a function of fpL3/A. Note that
we ignore the trivial branch (o = 0) associated with the
translational symmetry of the filament. As in Fig. 5(a), the
linear stability analysis shows five regimes, the first and third
are stable, with o real and negative, while the second is
unstable, with o real and positive, indicating that the straight
filament configuration is unstable. The imaginary part of o
becomes nonzero when the force for fpL3/A Z 234 with negative
real part at first, indicating decaying oscillations but as fpL3/A
increases past 300, the real part Re(o) becomes positive indicating
linearly growing oscillations and unstable straight configuration.
On the left of Fig. 5(a), we plot the eigenmodes associated with the
dominant branch ŷ(s)eot; darker color indicates increasing time.
The oscillation frequencies obtained from the nonlinear simula-
tions in regime (4) are shown as diamond markers in Fig. 5(b),
indicating perfect agreement with the frequencies Im(o) obtained
from the linear stability analysis.

We compare the filament behavior to the two limit cases
where the force is applied at one of the filament’s ends, either
pushing the filament ahead for sp = 0 or pulling it behind for
sp/L = 1. The eigenvalues of these limit cases are plotted in
Fig. 6. For sp = 0, the filament transitions from stable to
oscillatory motion, but it does not exhibit a buckled state with
locked curvature. For sp/L = 1, the straight configuration is
always stable due to the extensile stress everywhere in the
filament. It is worthwhile to mention that the limit sp/L - 1
is a singular limit. In this limit, an infinitesimal portion (sp/L,1]
of the filament is always under compression due to the applied
force; thus the filament can, in theory, buckle, albeit at very
large forces. At sp/L = 1, the filament is in pure tension and
buckling is not possible.

To quantify the role of the location of the applied force on
the filament behavior, we vary both the location sp/L and
magnitude fpL3/A of the applied force and classify the filament’s

Fig. 5 (a) Bending energy of the steady states as a function of the applied force in the case sp = 0.4. As fpL3/A increases from 0 to 300, we observe
successive changes in the stored elastic energy that reflect the distinct regimes of filament behavior from straight (1) to a buckled state with locked shape
(2), back to straight (1), to decaying oscillations (3), and finally to bounded oscillations (4). Filament configurations in the body frame are shown to the
right. In regime (4), we report the maximum, minimum, and average values of the elastic energy, as highlighted in the grey region. The transitions
between these regimes occur at around fpL3/A = 111, 213, 234 and 297. (b) The dominant branch of the eigenvalue o as a function of the applied force, the
real component is plotted in solid line, while the imaginary component is plotted in dashed line. In regime (4), we superimpose the oscillation frequencies
(shown as diamond markers) obtained from the nonlinear simulations. The results of the linear stability analysis are consistent with the nonlinear analysis
in (a). In addition, the configurations of the eigenmodes associated with the dominant branch ŷ(s)eot are shown to the left.

Fig. 6 Eigenvalues of the two limit cases: (a) pushing force at sp = 0; (b) pulling force at sp = 1. In (a), only three regimes of motion are observed: stable,
decaying oscillations and growing oscillations. In (b), the filament is always stable, which can be proved as a singular limit.
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behavior according to the eigenvalues of the linear stability
analysis. For each value of sp/L, we compute the values of
the critical force that marks the transitions in the filament
behavior. We map the filament behavior onto the phase space
(sp/L, fpL3/A) in Fig. 7, which shows four regions with four distinct
filament behaviors: stable, buckled with locked curvature, decaying
oscillations and sustained oscillations. The buckled behavior
with locked curvature occurs in an ‘‘island’’ that appears only
for 0.35 o sp/L o 1 when the force is applied away from the two
ends of the filaments.

To elucidate the physical mechanisms at play in these regimes,
we note that the filament can be split into two segments: the
segment trailing the location of the applied force is under
tension while the segment ahead is under compression. The
interplay between these two segments allows the filament, for a
range of values of the applied forces, to buckle into a curved
configuration with locked-curvature. A simple scaling argu-
ment suggests that, in addition to the elastic relaxation time
scale Te B xL4/A that we used as a characteristic time to obtain
the non-dimensional form of the equations of motion, there are
two additional time scales associated with the portion of the
filament under compression: a time scale Tp B x(L � sp)/fp that
arises from balancing the applied force with the hydrodynamic
drag on a straight filament in translational motion, and a time
scale Tc B x(L � sp)4/A that is obtained by balancing drag with
the elastic force. If sp/L = 1, the time scale Tc = 0 implying that
the elastic forces required to deform the filament are infinitely
large; the filament does not deform, consistent with the linear
stability analysis in Fig. 6. When sp = 0, the two time scales Tc and
Te are identical. The ratio Te/Tp is equal to the dimensionless force
fpL3/A. For large force values (Te/Tp c 1), the translational motion
happens much faster than the elastic deformation; the filament has
no time to relax, instead it buckles. For 0 o sp o L, the ratio Tc/Tp is

equal to (fpL3/A)((L � sp)3/L3). The condition Tc/Tp B 1 implies a
buckling criterion fpL3/A B L3/(L � sp)3. This buckling criterion is
superimposed onto in the phase space in Fig. 7. For sp/L 4 0.35,
this simple scaling argument shows excellent agreement with the
transition from stable to buckled state.

In practice, multiple molecular motors can simultaneously
bind to the same microtubule, generating a distribution of
forces along the microtubule length. It is therefore worthwhile
to investigate the influence of multiple point forces and of
continuous force distributions on the filament behavior. To this
end, we consider the following two scenarios: (i) a filament subject
to two point forces f1 = f2 = fp located at s1 and s2, respectively, and
(ii) a filament subject to a Gaussian force density as in (6) and (7),
with a standard deviation e that is not necessarily small. To
compare the behavior of the filament under these force profiles
to its behavior under a single force, we fix one force at s1 = 0.4 as
done in Fig. 3–5. In Fig. 8(a), we vary the position s2 of the second
force and in Fig. 8(b), we vary e. The dominant eigenvalue, with
real part shown in solid lines and imaginary part shown in dashed
lines, is shown in Fig. 8(a) for three cases: (I) s2 = 0.2, (II) s2 = 0.5,
and (III) s2 = 0.8, force profiles are all depicted to the right. For
s2 = 0.2, the filament transitions from straight to first decaying,
then sustained, oscillations as the force strength increases. For
s2 = 0.5, the filament exhibits a buckled state at locked curvature
for a range of force values similar to that reported in the case of a
single force. For s2 = 0.8, the straight configuration is stable and
transitions to oscillatory motions occur at much larger values of
the force. These results show that there exists a range of separa-
tion distances between pairs of forces of equal strength for which
the filament exhibits all the behaviors reported in Fig. 7 for a
single force. Also by continuity, we expect the filament to exhibit
similar behaviors for a range of force values when the two forces
are not of equal strength. Fig. 8(b) depicts the dominant eigen-
value for a Gaussian force profile for (I) e = 0.01, (II) e = 0.05, and
(III) e = 0.1. The buckled state at locked-curvature is observed for
e = 0.01 and e = 0.05, and disappears for e = 0.1 as the force profile
flattens. This is in contrast to the results in ref. 14, where spiral
deformations are observed for tangential forces that are uniformly
applied along the filament. We attribute this distinction in
behavior to fundamental differences in the filament model.
In ref. 14, the filament is composed of a chain of colloidal
particles that experience internal bond forces and excluded-
volume repulsion forces in addition to bending resistance that
differs from the bending model considered here.

VI. Spring-bead model

Our goal in this section is to gain more insight into the
appearance of the locked-curvature state (the yellow region in
Fig. 7), and the transition from this to oscillatory motions.
In particular, we would like to confirm that the mechanism
leading for this locked-curvature state depends on the interplay
between the two portions of the filament: the trailing portion
that is under tension and the portion ahead of the axial force that
is under compression. To this end, we consider a bead-spring

Fig. 7 Phase space of the filament behavior as a function of (sp/L,fpL3/A),
plotted on a semi-log scale. Four distinct filament behaviors are observed:
stable (straight filament undergoing translational motion), buckled state
with locked curvature (curved filament tracing a circular trajectory), stable
with decaying oscillations, and buckled state with sustained oscillations
(filament oscillates while undergoing translational motion reminiscent to
undulatory swimming). The dashed line indicates the approximate scaling
law of the critical value that buckling occurs.
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model with the aim of reproducing these effects with the mini-
mum number of degrees of freedom. Specifically, we study a
simpler model consisting of a chain of N + 1 spherical beads
linked by N rigid rods, with a torsional spring of constant
rotational stiffness coefficient k at each joint. The total length of
the chain is L. The position of each bead is denoted by ri, with
i = 0,. . .,N, and satisfies ri+1 = ri + L/Nti, where ti is a unit vector
representing the orientation of the ith link, where i changes from
1 to N. The chain is subject to an external force F applied at one
joint, say joint p, parallel to the link connecting joint p to joint
p + 1 such that F = Ftp, where p is the index of the chosen link.
As p increases, with all other parameters held constant, the
portion of the chain that is being pulled increases while the portion
that is being pushed or compressed decreases. On the other hand,
as N increases, keeping all other parameters the same, the opposite
is true: the pulled portion of the chain decreases and the pushed
portion increases. By comparing the behavior of the chain for
various N and p, we can confirm that the interplay between these
two segments is a universal mechanism that governs the transi-
tions between various behaviors. Specifically, we expect a transition
to oscillatory motion as N increases and a gradual inhibition of
these buckling instabilities as p increases.

It is convenient for what follows to scale all lengths by the
total length L of the chain. Considering a net drag coefficient x
on the chain, we scale time by xL2/k. The force F is then scaled
by k/L. The scaled drag coefficient on each bead is 1/(N + 1). We
write the equations of motion of the chain in dimensionless
form. First, the force balance on the whole chain leads to

Ftp �
1

N þ 1

XN
i¼0

vi ¼ 0; (18)

where vi = rit denotes the velocity of the ith bead. Then, on the
jth link, the moment about rj�1 is balanced in terms of the
inner forces and the torsional springs. Namely, for j o p,
one has

1

N
nj � Ftp �

1

N þ 1

XN
i¼j

vi

 !
�Yj�1 þYj ¼ 0; (19)

whereas, for j Z p,

� 1

NðN þ 1Þnj �
XN
i¼j

vi �Yj�1 þYj ¼ 0: (20)

Here, we defined Yj = yj+1 � yj, for j = 1, 2,. . .,N � 1, to
represent the relative angles between two consecutive links.
This definition is ambiguous at the two free ends of the chain;
to disambiguate, we define Y0 = YN = 0.

By construction, vi+1 = vi + yitni/N, which we substitute into
eqn (18) to calculate v0,

v0 ¼ Ftp �
1

NðN þ 1Þ
XN
i¼1

N � i þ 1ð Þyitni: (21)

We also use vi+1 = vi + yitni/N to obtain an expression for

nj �
PN
i¼j

vi, namely,

nj �
XN
i¼j

vi ¼ ðN � j þ 1ÞF sin yp � yj
� �

þ 1

NðN þ 1Þ
Xj
i¼1

iðN � j þ 1Þyit cos yi � yj
� �

þ 1

NðN þ 1Þ
XN
i¼jþ1

j N � i þ 1ð Þyit cos yi � yj
� �

:

(22)

We substitute eqn (22) into eqn (19) and (20) to get a closed
system of N nonlinear ordinary differential equations for the
N degrees of freedom yj, j = 1, 2,. . .,N, that describe the shape
and orientation of the chain. We solve this system numerically
to obtain the deformation and rotational motion of the spring-
bead chain.

Similar to the full filament model, the straight configuration
of the chain is a relative equilibrium of the nonlinear equations
of motion. To analyze the stability of this relative equilibrium,
we assume small deformations and linearize the equations of

Fig. 8 Linear stability analysis: (a) filament subject to two point forces of equal strength as shown to the right; one force is fixed at s1 = 0.4 and the
second force is located at s2 = 0.2 (black), 0.5 (red), and 0.8 (blue), and (b) filament subject to a Gaussian force profile with standard deviations e = 0.01
(black), 0.05 (red), and 0.1 (blue) as shown to the left. The eigenvalues are calculated with respect to the force magnitude, the real parts of the dominant
eigenvalue are represented in solid lines, and the imaginary parts in dashed lines.
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motion for yj. We get that, for j o p,

Xj
i¼1

iðN � j þ 1Þyit þ
XN
i¼jþ1

jðN � i þ 1Þyit

¼ N2ðN þ 1Þ2 j

NðN þ 1ÞF yp � yj
� �

�Yj�1 þYj

� �
;

(23)

and, for j Z p,

Xj
i¼1

iðN � j þ 1Þyit þ
XN
i¼jþ1

jðN � i þ 1Þyit

¼ N2ðN þ 1Þ2 �ðN � j þ 1Þ
NðN þ 1Þ F yp � yj

� �
�Yj�1 þYj

� �
:

(24)

We first consider a minimal case of two links. When the
force is exerted on the first link (p = 1), an instability occurs at
FL/k = 12. For example, in Fig. 9(a), we solve the nonlinear
equations eqn (18)–(20) for FL/k = 13 and with an initial
condition slightly-perturbed from the straight configuration.
The links fold into a ‘‘V’’ shape at a locked angle Y1 = Dy = y2� y1,
and undergo a circular motion reminiscent to that observed in
Fig. 3(b). The angle Dy can be calculated analytically from the
nonlinear equations by assuming a rigid-body motion of the links,
with rotation rate O = y1t = y2t. We get that FL/k = 12Dy/sinDy. This
yields Dy E 0.69 for FL/k = 13, which matches the numerical
results shown in Fig. 9(a). The instability can be tested by solving
the linearized equations eqn (23) and (24), which gives rise to one
nonzero eigenvalue o1 = 6(FL/k � 12), depicted in Fig. 9(b), and
confirming the nonlinear analysis that for FL/k 4 12, the straight
configuration of the two-link chain becomes unstable.

In an effort to capture the transition from a buckling at a
locked shape to oscillatory motions, we increase the number of
links while applying the force at p = 1. We observe the following
sequence of bifurcations in the chain behavior. When N = 3,
we obtain two nonzero eigenvalues o1 = 6(FL/k � 12) and o2 =
18(FL/k � 20), implying that the three-link chain becomes
unstable for FL/k 4 12, but cannot exhibit oscillatory motions.
For N = 4, we obtain three nonzero eigenvalues, including two
branches with nonzero imaginary part, indicating oscillatory
motions. In Fig. 9(c), we show an example of such oscillations
by solving the nonlinear equation for FL/k = 23. In Fig. 9(d), we
show the three branches of the eigenvalues as a function of the
applied force FL/k; the non-positive real eigenvalues o1 and o2

collide at FL/k = 15.3 to give rise a complex pair, first with a
negative real part (decaying oscillations), then positive real part
at FL/k = 16.6 (growing oscillations). The dominant branch
shown in the inset of Fig. 9(d) resembles the dominant branch
in Fig. 6(a). Thus, at p = 1 and N = 4, the structure of the
eigenvalue problem does not lead to a transition from the
locked shape to oscillatory deformations. This is true for all N
when p = 1, as evidenced in Fig. 10(a). The phase space in
Fig. 10(a) depicts the chain behavior as a function of the length
of each link (the inverse 1/N of the number of links) and
applied force FL/k. As N - N, the chain model approaches

the full filament model, with force applied near the proximal
end of the filament.

When the force is exerted on the second link (p = 2), the
straight configuration is unconditionally stable for N = 2, when
the chain is being mostly pulled by the applied force, and
exhibits a transition to a locked-curvature state for N = 3 and
N = 4. For these N values, the dominant eigenvalue is similar to
that shown in Fig. 9(d) (results not shown for brevity), and thus
transitions to oscillatory motions are not permitted. However,
at N = 5, the chain exhibits two successive instabilities as FL/k
increases, first from straight to a shape with locked curvature,
then to sustained oscillations as shown in Fig. 10(b).

In summary, when the force is applied to the first link
(Fig. 10(a)), as we vary the total number of links and the

Fig. 9 Spring-bead model: (a) for N = 2, p = 1, the chain undergoes a
circular motion at a locked shape when FL/k 4 12. (b) at FL/k 4 12, the
only nonzero eigenvalue o1 obtained the linear stability analysis becomes
positive. (c) For N = 4, p = 1, the chain undergoes oscillatory motion for
FL/k = 23. (d) Linear stability analysis reveals three eigenvalues, that are all
real for small FL/k = 23. The real parts are plotted with solid lines, and
the imaginary parts with dashed lines; the inset shows the dominant
eigenvalue. The two branches o1,2 collide at FL/k = 15.3, forming a Hopf
bifurcation reminiscent of the dominant branch of the continuous filament
in Fig. 6(a).
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magnitude of the applied force, the chain exhibits a transition
to circular trajectories at locked shape for N r 3 and to
oscillatory motions for N Z 4, and no transition between these
two states for any N. In contrast, when the force is applied to
the second link (Fig. 10(b)), allowing for a greater portion of the
chain to trail behind the applied force, we recover the transi-
tions from straight to curved shape, then from curved shape to
oscillatory motions for 5 r N r 7. Taken together, these results
indicate that the transition from locked curvature to oscillatory
motion requires (i) a minimum number of degrees of freedom
in the portion of the chain that is under compression, and
(ii) a sufficient portion of the chain should be trailing behind
the location of the applied force.

VII. Discussion

Motility assays show that microtubules driven by molecular
motors can exhibit straight, circular (at locked-curvature) and
oscillatory motions.7,11,12 Inspired by these observations, we
proposed the simplest model of a motor-driven filament with
free-ends using an applied ‘follower-force’ of constant magnitude.
The point force fp can be applied anywhere along the filament, not
necessarily at the two ends. When fp is applied at the proximal
end, the filament exhibits a Hopf bifurcation, and transitions
from a stable straight configuration to decaying then sustained
oscillations, reminiscent of the Hopf bifurcation reported in
ref. 31 and 32 for a clamped filament. When fp is applied at the
distal end, the filament’s straight configuration is unconditionally
stable. In between, the portion of the filament ahead of the force
location experiences compressive stress while the trailing portion
is under tension. This interplay of compressive and tensile
stresses along the filament gives rise to a novel instability, as
the force magnitude increases beyond a threshold value, where
the filament buckles into a configuration with locked curva-
ture and undergoes circular motion in the plane, analogous to

experimentally observed trajectories of microtubules driven
by motor proteins.7 A simple scaling argument shows that the
length scale that is relevant for the transition to the locked
curvature is not the length of the full filament, but of the
portion that is under compression.

Motivated by these findings, we proposed a yet simpler
spring-bead model. The results of this model support our
findings in the filament model that the trailing portion that
is under tension plays an important role in these morpho-
logical transitions. Taken together, the results from the fila-
ment and spring-bead model suggest that neither structural
nor actuation asymmetries in motor-driven microtubules are
needed to produce buckled states at locked curvature.

The filament model proposed here is an ideal representation
of a motor-driven microtubule. In the real system, molecular
motors bind and unbind stochastically to microtubules. Further,
in the motility assays that motivated this study, the molecular
motors are fixed to the substrate and do not move with the
microtubules, but other motors get in contact with the micro-
tubules as they are transported by the action of bound motors.
Despite the limitations of the current model, we use it to roughly
gauge whether the morphological transitions reported in this
study are biologically-relevant to the mechanics of motor-driven
microtubules. The force exerted on microtubules by the molecular
motors is known to be of the order of pico-Newtons (E 1–10 pN)
and microtubules are approximately 20 mm in length. Assuming,
following,31 that the bending rigidity A E 10 pN mm2, we get that
for the transition observed at the largest dimensionless force
value fpL3/A = 300, the dimensional force density fp = 300(10)/203 =
3/8 pN mm�1. Thus, the force value must be about 7.5 pN, which is
within what is biologically achievable by a single molecular motor.

A few comments relating our findings to recent studies on
active microfilaments are in order. In particular, a spiraling
instability reminiscent of the buckling instability with locked
configuration is observed in untethered flexible chains subject to
uniform and non-uniform tangential forces.14,15,17,40 The spiraling

Fig. 10 The phase space summarizing the behavior of the bead-spring model as a function of (1/N,FL/k). Results are constructed based on linear stability
analysis and confirmed using numerical simulations of the nonlinear equations. (a) for p = 1, the force FL/k is applied on the first link. At N Z 4, the chain
transitions from straight to oscillatory motions and the buckled regime with locked-curvature disappears; (b) for p = 2, the force FL/k is applied at the
second link. With one trailing link, we observe a transition from locked-curvature to oscillations when N Z 5.
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mode seems to depend on the structural (polymer-like) model of
the chain, which is fundamentally distinct from the filament
model considered here, and the presence of thermal fluctuations.
Our model is based on a continuum rod theory and it is closest to
the models considered in ref. 31 and 32.

The work in this study is a first step towards developing
more realistic mechanics-based models of the full interplay of
molecular motors with microtubules. Future extension of this
work will account for the stochastic binding of molecular
motors. In ongoing work, we are extending this model to
account for long range hydrodynamic effects of the viscous
fluid using slender body theory.41 We are particularly interested
in the interaction of multiple filaments connected kinemati-
cally (via structural elements) and dynamically (via molecular
motors) to model the internal axoneme structure of cilia and
flagella.32,42–44 These models will provide the basis to address
complex systems in cellular biophysics, from the mechanisms
underlying self-sustained oscillations in flagellar mechanics to
flow transport by ciliary beds.
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